The Stacks project

59.62 The Brauer group of a scheme

Let $S$ be a scheme. An $\mathcal{O}_ S$-algebra $\mathcal{A}$ is called Azumaya if it is étale locally a matrix algebra, i.e., if there exists an étale covering $\mathcal{U} = \{ \varphi _ i : U_ i \to S\} _{i \in I}$ such that $\varphi _ i^*\mathcal{A} \cong \text{Mat}_{d_ i}(\mathcal{O}_{U_ i})$ for some $d_ i \geq 1$. Two such $\mathcal{A}$ and $\mathcal{B}$ are called equivalent if there exist finite locally free $\mathcal{O}_ S$-modules $\mathcal{F}$ and $\mathcal{G}$ which have positive rank at every $s \in S$ such that

\[ \mathcal{A} \otimes _{\mathcal{O}_ S} \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ S}(\mathcal{F}, \mathcal{F}) \cong \mathcal{B} \otimes _{\mathcal{O}_ S} \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ S}(\mathcal{G}, \mathcal{G}) \]

as $\mathcal{O}_ S$-algebras. The Brauer group of $S$ is the set $\text{Br}(S)$ of equivalence classes of Azumaya $\mathcal{O}_ S$-algebras with the operation induced by tensor product (over $\mathcal{O}_ S$).

Lemma 59.62.1. Let $S$ be a scheme. Let $\mathcal{F}$ and $\mathcal{G}$ be finite locally free sheaves of $\mathcal{O}_ S$-modules of positive rank. If there exists an isomorphism $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ S}(\mathcal{F}, \mathcal{F}) \cong \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ S}(\mathcal{G}, \mathcal{G})$ of $\mathcal{O}_ S$-algebras, then there exists an invertible sheaf $\mathcal{L}$ on $S$ such that $\mathcal{F} \otimes _{\mathcal{O}_ S} \mathcal{L} \cong \mathcal{G}$ and such that this isomorphism induces the given isomorphism of endomorphism algebras.

Proof. Fix an isomorphism $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ S}(\mathcal{F}, \mathcal{F}) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ S}(\mathcal{G}, \mathcal{G})$. Consider the sheaf $\mathcal{L} \subset \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{F}, \mathcal{G})$ generated as an $\mathcal{O}_ S$-module by the local isomorphisms $\varphi : \mathcal{F} \to \mathcal{G}$ such that conjugation by $\varphi $ is the given isomorphism of endomorphism algebras. A local calculation (reducing to the case that $\mathcal{F}$ and $\mathcal{G}$ are finite free and $S$ is affine) shows that $\mathcal{L}$ is invertible. Another local calculation shows that the evaluation map

\[ \mathcal{F} \otimes _{\mathcal{O}_ S} \mathcal{L} \longrightarrow \mathcal{G} \]

is an isomorphism. $\square$

The argument given in the proof of the following lemma can be found in [Saltman-torsion].


Lemma 59.62.2. Let $S$ be a scheme. Let $\mathcal{A}$ be an Azumaya algebra which is locally free of rank $d^2$ over $S$. Then the class of $\mathcal{A}$ in the Brauer group of $S$ is annihilated by $d$.

Proof. Choose an étale covering $\{ U_ i \to S\} $ and choose isomorphisms $\mathcal{A}|_{U_ i} \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{F}_ i, \mathcal{F}_ i)$ for some locally free $\mathcal{O}_{U_ i}$-modules $\mathcal{F}_ i$ of rank $d$. (We may assume $\mathcal{F}_ i$ is free.) Consider the composition

\[ p_ i : \mathcal{F}_ i^{\otimes d} \to \wedge ^ d(\mathcal{F}_ i) \to \mathcal{F}_ i^{\otimes d} \]

The first arrow is the usual projection and the second arrow is the isomorphism of the top exterior power of $\mathcal{F}_ i$ with the submodule of sections of $\mathcal{F}_ i^{\otimes d}$ which transform according to the sign character under the action of the symmetric group on $d$ letters. Then $p_ i^2 = d! p_ i$ and the rank of $p_ i$ is $1$. Using the given isomorphism $\mathcal{A}|_{U_ i} \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{F}_ i, \mathcal{F}_ i)$ and the canonical isomorphism

\[ \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{F}_ i, \mathcal{F}_ i)^{\otimes d} = \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{F}_ i^{\otimes d}, \mathcal{F}_ i^{\otimes d}) \]

we may think of $p_ i$ as a section of $\mathcal{A}^{\otimes d}$ over $U_ i$. We claim that $p_ i|_{U_ i \times _ S U_ j} = p_ j|_{U_ i \times _ S U_ j}$ as sections of $\mathcal{A}^{\otimes d}$. Namely, applying Lemma 59.62.1 we obtain an invertible sheaf $\mathcal{L}_{ij}$ and a canonical isomorphism

\[ \mathcal{F}_ i|_{U_ i \times _ S U_ j} \otimes \mathcal{L}_{ij} \longrightarrow \mathcal{F}_ j|_{U_ i \times _ S U_ j}. \]

Using this isomorphism we see that $p_ i$ maps to $p_ j$. Since $\mathcal{A}^{\otimes d}$ is a sheaf on $S_{\acute{e}tale}$ (Proposition 59.17.1) we find a canonical global section $p \in \Gamma (S, \mathcal{A}^{\otimes d})$. A local calculation shows that

\[ \mathcal{H} = \mathop{\mathrm{Im}}(\mathcal{A}^{\otimes d} \to \mathcal{A}^{\otimes d}, f \mapsto fp) \]

is a locally free module of rank $d^ d$ and that (left) multiplication by $\mathcal{A}^{\otimes d}$ induces an isomorphism $\mathcal{A}^{\otimes d} \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{H}, \mathcal{H})$. In other words, $\mathcal{A}^{\otimes d}$ is the trivial element of the Brauer group of $S$ as desired. $\square$

In this setting, the analogue of the isomorphism $\delta $ of Theorem 59.61.6 is a map

\[ \delta _ S: \text{Br}(S) \to H_{\acute{e}tale}^2(S, \mathbf{G}_ m). \]

It is true that $\delta _ S$ is injective. If $S$ is quasi-compact or connected, then $\text{Br}(S)$ is a torsion group, so in this case the image of $\delta _ S$ is contained in the cohomological Brauer group of $S$

\[ \text{Br}'(S) := H_{\acute{e}tale}^2(S, \mathbf{G}_ m)_\text {torsion}. \]

So if $S$ is quasi-compact or connected, there is an inclusion $\text{Br}(S) \subset \text{Br}'(S)$. This is not always an equality: there exists a nonseparated singular surface $S$ for which $\text{Br}(S) \subset \text{Br}'(S)$ is a strict inclusion. If $S$ is quasi-projective, then $\text{Br}(S) = \text{Br}'(S)$. However, it is not known whether this holds for a smooth proper variety over $\mathbf{C}$, say.

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0A2J. Beware of the difference between the letter 'O' and the digit '0'.