Lemma 66.41.5. Let $S$ be a scheme. Let $f : X \to Y$ be a separated morphism of algebraic spaces over $S$. The following are equivalent

$f$ satisfies the existence part of the valuative criterion as in Definition 66.41.1,

given any commutative solid diagram

\[ \xymatrix{ \mathop{\mathrm{Spec}}(K) \ar[r] \ar[d] & X \ar[d] \\ \mathop{\mathrm{Spec}}(A) \ar[r] \ar@{-->}[ru] & Y } \]where $A$ is a valuation ring with field of fractions $K$, there exists a dotted arrow, i.e., $f$ satisfies the existence part of the valuative criterion as in Schemes, Definition 26.20.3.

## Comments (0)