The Stacks project

Lemma 57.81.2. Let $A$ be a henselian local ring. Let $X = \mathbf{P}^1_ A$. Let $X_0 \subset X$ be the closed fibre. Let $\ell $ be a prime number. Let $\mathcal{I}$ be an injective sheaf of $\mathbf{Z}/\ell \mathbf{Z}$-modules on $X_{\acute{e}tale}$. Then $H^ q_{\acute{e}tale}(X_0, \mathcal{I}|_{X_0}) = 0$ for $q > 0$.

Proof. Observe that $X$ is a separated scheme which can be covered by $2$ affine opens. Hence for $q > 1$ this follows from Gabber's affine variant of the proper base change theorem, see Lemma 57.79.8. Thus we may assume $q = 1$. Let $\xi \in H^1_{\acute{e}tale}(X_0, \mathcal{I}|_{X_0})$. Goal: show that $\xi $ is $0$. By Lemmas 57.72.2 and 57.51.4 we can find a map $\mathcal{F} \to \mathcal{I}$ with $\mathcal{F}$ a constructible sheaf of $\mathbf{Z}/\ell \mathbf{Z}$-modules and $\xi $ coming from an element $\zeta $ of $H^1_{\acute{e}tale}(X_0, \mathcal{F}|_{X_0})$. Suppose we have an injective map $\mathcal{F} \to \mathcal{F}'$ of sheaves of $\mathbf{Z}/\ell \mathbf{Z}$-modules on $X_{\acute{e}tale}$. Since $\mathcal{I}$ is injective we can extend the given map $\mathcal{F} \to \mathcal{I}$ to a map $\mathcal{F}' \to \mathcal{I}$. In this situation we may replace $\mathcal{F}$ by $\mathcal{F}'$ and $\zeta $ by the image of $\zeta $ in $H^1_{\acute{e}tale}(X_0, \mathcal{F}'|_{X_0})$. Also, if $\mathcal{F} = \mathcal{F}_1 \oplus \mathcal{F}_2$ is a direct sum, then we may replace $\mathcal{F}$ by $\mathcal{F}_ i$ and $\zeta $ by the image of $\zeta $ in $H^1_{\acute{e}tale}(X_0, \mathcal{F}_ i|_{X_0})$.

By Lemma 57.73.4 and the remarks above we may assume $\mathcal{F}$ is of the form $f_*\underline{M}$ where $M$ is a finite $\mathbf{Z}/\ell \mathbf{Z}$-module and $f : Y \to X$ is a finite morphism of finite presentation (such sheaves are still constructible by Lemma 57.72.9 but we won't need this). Since formation of $f_*$ commutes with any base change (Lemma 57.54.3) we see that the restriction of $f_*\underline{M}$ to $X_0$ is equal to the pushforward of $\underline{M}$ via the induced morphism $Y_0 \to X_0$ of special fibres. By the Leray spectral sequence (Proposition 57.53.2) and vanishing of higher direct images (Proposition 57.54.2), we find

\[ H^1_{\acute{e}tale}(X_0, f_*\underline{M}|_{X_0}) = H^1_{\acute{e}tale}(Y_0, \underline{M}). \]

Since $Y \to \mathop{\mathrm{Spec}}(A)$ is proper we can use Lemma 57.81.1 to see that the $H^1_{\acute{e}tale}(Y_0, \underline{M})$ is equal to $H^1_{\acute{e}tale}(Y, \underline{M})$. Thus we see that our cohomology class $\zeta $ lifts to a cohomology class

\[ \tilde\zeta \in H^1_{\acute{e}tale}(Y, \underline{M}) = H^1_{\acute{e}tale}(X, f_*\underline{M}) \]

However, $\tilde\zeta $ maps to zero in $H^1_{\acute{e}tale}(X, \mathcal{I})$ as $\mathcal{I}$ is injective and by commutativity of

\[ \xymatrix{ H^1_{\acute{e}tale}(X, f_*\underline{M}) \ar[r] \ar[d] & H^1_{\acute{e}tale}(X, \mathcal{I}) \ar[d] \\ H^1_{\acute{e}tale}(X_0, (f_*\underline{M})|_{X_0}) \ar[r] & H^1_{\acute{e}tale}(X_0, \mathcal{I}|_{X_0}) } \]

we conclude that the image $\xi $ of $\zeta $ is zero as well. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0A5H. Beware of the difference between the letter 'O' and the digit '0'.