Lemma 21.33.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Given complexes $\mathcal{K}^\bullet , \mathcal{L}^\bullet , \mathcal{M}^\bullet $ of $\mathcal{O}$-modules there is an isomorphism

\[ \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{M}^\bullet )) = \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\text{Tot}(\mathcal{K}^\bullet \otimes _\mathcal {O} \mathcal{L}^\bullet ), \mathcal{M}^\bullet ) \]

of complexes of $\mathcal{O}$-modules functorial in $\mathcal{K}^\bullet , \mathcal{L}^\bullet , \mathcal{M}^\bullet $.

## Comments (0)