The Stacks project

Lemma 85.4.14. Let $\varphi : A \to B$ be a continuous homomorphism of linearly topologized rings. If

  1. $\varphi $ is taut,

  2. $\varphi $ has dense image,

  3. $A$ is complete,

  4. $B$ is separated, and

  5. $A$ has a countable fundamental system of neighbourhoods of $0$.

Then $\varphi $ is surjective and open, $B$ is complete, and $B = A/K$ for some closed ideal $K \subset A$.

Proof. We may choose a sequence of open ideals $A \supset I_1 \supset I_2 \supset I_3 \supset \ldots $ which form a fundamental system of neighbourhoods of $0$. For each $i$ let $J_ i \subset B$ be the closure of $\varphi (I_ i)B$. As $\varphi $ is taut we see that these form a fundamental system of open ideals of $B$. Set $I_0 = A$ and $J_0 = B$. Let $n \geq 0$ and let $y_ n \in J_ n$. Since $J_ n$ is the closure of $\varphi (I_ n)B$ we can write

\[ y_ n = \sum \nolimits _ t \varphi (f_ t)b_ t + y'_{n + 1} \]

for some $f_ t \in I_ n$, $b_ t \in B$, and $y'_{n + 1} \in J_{n + 1}$. Since $\varphi $ has dense image we can choose $a_ t \in A$ with $\varphi (a_ t) = b_ t \bmod J_{n + 1}$. Thus

\[ y_ n = \varphi (f_ n) + y_{n + 1} \]

with $f_ n = \sum f_ ta_ t \in I_ n$ and $y_{n + 1} = y'_{n + 1} + \sum f_ t(b_ t - \varphi (a_ t)) \in J_{n + 1}$. Thus, starting with any $y = y_0 \in B$, we can find by induction a sequence $f_ m \in I_ m$, $m \geq 0$ such that

\[ y = y_0 = \varphi (f_0 + f_1 + \ldots + f_ n) + y_{n + 1} \]

with $y_{n + 1} \in J_{n + 1}$. Since $A$ is complete we see that

\[ x = x_0 = f_0 + f_1 + f_2 + \ldots \]

exists. Since the partial sums approximate $x$ in $A$, since $\varphi $ is continuous, and since $B$ is separated we find that $\varphi (x) = y$ because above we've shown that the images of the partial sums approximate $y$ in $B$. Thus $\varphi $ is surjective. In exactly the same manner we find that $\varphi (I_ n) = J_ n$ for all $n \geq 1$. This proves the lemma. $\square$


Comments (2)

Comment #1727 by Matthew Emerton on

In line four of the proof, I think it should read " is the closure", rather than .


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0APT. Beware of the difference between the letter 'O' and the digit '0'.