Lemma 67.48.7. Let $S$ be a scheme. Let $f : Y \to X$ be a quasi-compact and quasi-separated morphism of schemes. Let $X' \to X$ be the normalization of $X$ in $Y$. If $x' \in |X'|$ is a point of codimension $0$ (Properties of Spaces, Definition 66.10.2), then $x'$ is the image of some $y \in |Y|$ of codimension $0$.
Proof. By Lemma 67.48.4 and the definitions, we may assume that $X = \mathop{\mathrm{Spec}}(A)$ is affine. Then $X' = \mathop{\mathrm{Spec}}(A')$ where $A'$ is the integral closure of $A$ in $\Gamma (Y, \mathcal{O}_ Y)$ and $x'$ corresponds to a minimal prime of $A'$. Choose a surjective étale morphism $V \to Y$ where $V = \mathop{\mathrm{Spec}}(B)$ is affine. Then $A' \to B$ is injective, hence every minimal prime of $A'$ is the image of a minimal prime of $B$, see Algebra, Lemma 10.30.5. The lemma follows. $\square$
Comments (0)
There are also: