Lemma 29.38.8. Let f : X \to S be a morphism of schemes. Let \mathcal{L} be an invertible \mathcal{O}_ X-module. Let S' \to S be a morphism of schemes. Let f' : X' \to S' be the base change of f and denote \mathcal{L}' the pullback of \mathcal{L} to X'. If \mathcal{L} is f-very ample, then \mathcal{L}' is f'-very ample.
Proof. By Definition 29.38.1 there exists there exist a quasi-coherent \mathcal{O}_ S-module \mathcal{E} and an immersion i : X \to \mathbf{P}(\mathcal{E}) over S such that \mathcal{L} \cong i^*\mathcal{O}_{\mathbf{P}(\mathcal{E})}(1). The base change of \mathbf{P}(\mathcal{E}) to S' is the projective bundle associated to the pullback \mathcal{E}' of \mathcal{E} and the pullback of \mathcal{O}_{\mathbf{P}(\mathcal{E})}(1) is \mathcal{O}_{\mathbf{P}(\mathcal{E}')}(1), see Constructions, Lemma 27.16.10. Finally, the base change of an immersion is an immersion (Schemes, Lemma 26.18.2). \square
Comments (0)
There are also: