Lemma 30.11.5. Let $X$ be a regular scheme. Let $\mathcal{F}$ be a coherent $\mathcal{O}_ X$-module. The following are equivalent
$\mathcal{F}$ is Cohen-Macaulay and $\text{Supp}(\mathcal{F}) = X$,
$\mathcal{F}$ is finite locally free of rank $> 0$.
Lemma 30.11.5. Let $X$ be a regular scheme. Let $\mathcal{F}$ be a coherent $\mathcal{O}_ X$-module. The following are equivalent
$\mathcal{F}$ is Cohen-Macaulay and $\text{Supp}(\mathcal{F}) = X$,
$\mathcal{F}$ is finite locally free of rank $> 0$.
Proof. Let $x \in X$. If (2) holds, then $\mathcal{F}_ x$ is a free $\mathcal{O}_{X, x}$-module of rank $> 0$. Hence $\text{depth}(\mathcal{F}_ x) = \dim (\mathcal{O}_{X, x})$ because a regular local ring is Cohen-Macaulay (Algebra, Lemma 10.106.3). Conversely, if (1) holds, then $\mathcal{F}_ x$ is a maximal Cohen-Macaulay module over $\mathcal{O}_{X, x}$ (Algebra, Definition 10.103.8). Hence $\mathcal{F}_ x$ is free by Algebra, Lemma 10.106.6. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)