Lemma 79.10.1. Let $k$ be a field with algebraic closure $\overline{k}$. Let $G$ be a group algebraic space over $k$ which is separated1. Then $G_{\overline{k}}$ is a scheme.
Proof. By Spaces over Fields, Lemma 72.10.2 it suffices to show that $G_ K$ is a scheme for some field extension $K/k$. Denote $G_ K' \subset G_ K$ the schematic locus of $G_ K$ as in Properties of Spaces, Lemma 66.13.1. By Properties of Spaces, Proposition 66.13.3 we see that $G_ K' \subset G_ K$ is dense open, in particular not empty. Choose a scheme $U$ and a surjective étale morphism $U \to G$. By Varieties, Lemma 33.14.2 if $K$ is an algebraically closed field of large enough transcendence degree, then $U_ K$ is a Jacobson scheme and every closed point of $U_ K$ is $K$-rational. Hence $G_ K'$ has a $K$-rational point and it suffices to show that every $K$-rational point of $G_ K$ is in $G_ K'$. If $g \in G_ K(K)$ is a $K$-rational point and $g' \in G_ K'(K)$ a $K$-rational point in the schematic locus, then we see that $g$ is in the image of $G_ K'$ under the automorphism
of $G_ K$. Since automorphisms of $G_ K$ as an algebraic space preserve $G_ K'$, we conclude that $g \in G_ K'$ as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)