Lemma 79.10.2. Let $k$ be a field. Let $G$ be a group algebraic space over $k$. If $G$ is separated and locally of finite type over $k$, then $G$ is a scheme.
Proof. This follows from Lemma 79.10.1, Groupoids, Lemma 39.8.6, and Spaces over Fields, Lemma 72.10.7. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)