The Stacks project

Lemma 57.10.1. Let $f : X \to Y$ be a morphism of schemes. If $f(X)$ is dense in $Y$ then the base change functor $\textit{FÉt}_ Y \to \textit{FÉt}_ X$ is faithful.

Proof. Since the category of finite étale coverings has an internal hom (Lemma 57.5.4) it suffices to prove the following: Given $W$ finite étale over $Y$ and a morphism $s : X \to W$ over $X$ there is at most one section $t : Y \to W$ such that $s = t \circ f$. Consider two sections $t_1, t_2 : Y \to W$ such that $s = t_1 \circ f = t_2 \circ f$. Since the equalizer of $t_1$ and $t_2$ is closed in $Y$ (Schemes, Lemma 26.21.5) and since $f(X)$ is dense in $Y$ we see that $t_1$ and $t_2$ agree on $Y_{red}$. Then it follows that $t_1$ and $t_2$ have the same image which is an open and closed subscheme of $W$ mapping isomorphically to $Y$ (Étale Morphisms, Proposition 41.6.1) hence they are equal. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 57.10: Local connectedness

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BQE. Beware of the difference between the letter 'O' and the digit '0'.