Lemma 49.8.3. If the Dedekind different of $A \to B$ is defined and $A \to B$ is flat, then

the canonical isomorphism $\mathcal{L}_{B/A} \to \omega _{B/A}$ sends $1 \in \mathcal{L}_{B/A}$ to the trace element $\tau _{B/A} \in \omega _{B/A}$, and

the Dedekind different is $\mathfrak {D}_{B/A} = \{ b \in B \mid b\omega _{B/A} \subset B\tau _{B/A}\} $.

## Comments (0)