Lemma 49.8.3. If the Dedekind different of A \to B is defined and A \to B is flat, then
the canonical isomorphism \mathcal{L}_{B/A} \to \omega _{B/A} sends 1 \in \mathcal{L}_{B/A} to the trace element \tau _{B/A} \in \omega _{B/A}, and
the Dedekind different is \mathfrak {D}_{B/A} = \{ b \in B \mid b\omega _{B/A} \subset B\tau _{B/A}\} .
Comments (0)