Lemma 33.38.7. Let $f : X \to Y$ be a finite morphism of schemes. Assume there exists an open $V \subset Y$ such that $f^{-1}(V) \to V$ is an isomorphism and $Y \setminus V$ is a discrete space. Then every invertible $\mathcal{O}_ X$-module is the pullback of an invertible $\mathcal{O}_ Y$-module.
Proof. We will use that $\mathop{\mathrm{Pic}}\nolimits (X) = H^1(X, \mathcal{O}_ X^*)$, see Cohomology, Lemma 20.6.1. Consider the Leray spectral sequence for the abelian sheaf $\mathcal{O}_ X^*$ and $f$, see Cohomology, Lemma 20.13.4. Consider the induced map
Divisors, Lemma 31.17.1 says exactly that this map is zero. Hence Leray gives $H^1(X, \mathcal{O}_ X^*) = H^1(Y, f_*\mathcal{O}_ X^*)$. Next we consider the map
By assumption the kernel and cokernel of this map are supported on the closed subset $T = Y \setminus V$ of $Y$. Since $T$ is a discrete topological space by assumption the higher cohomology groups of any abelian sheaf on $Y$ supported on $T$ is zero (follows from Cohomology, Lemma 20.20.1, Modules, Lemma 17.6.1, and the fact that $H^ i(T, \mathcal{F}) = 0$ for any $i > 0$ and any abelian sheaf $\mathcal{F}$ on $T$). Breaking the displayed map into short exact sequences
we first conclude that $H^1(Y, \mathcal{O}_ Y^*) \to H^1(Y, \mathop{\mathrm{Im}}(f^\sharp ))$ is surjective and then that $H^1(Y, \mathop{\mathrm{Im}}(f^\sharp )) \to H^1(Y, f_*\mathcal{O}_ X^*)$ is surjective. Combining all the above we find that $H^1(Y, \mathcal{O}_ Y^*) \to H^1(X, \mathcal{O}_ X^*)$ is surjective as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: