The Stacks project

Lemma 74.21.4. Let $S$ be a scheme. Let $\mathcal{P}$ be a property of morphisms of algebraic spaces over $S$. Assume

  1. $\mathcal{P}$ is étale local on the source,

  2. $\mathcal{P}$ is smooth local on the target, and

  3. $\mathcal{P}$ is stable under postcomposing with open immersions: if $f : X \to Y$ has $\mathcal{P}$ and $Y \subset Z$ is an open embedding then $X \to Z$ has $\mathcal{P}$.

Then $\mathcal{P}$ is étale-smooth local on the source-and-target.

Proof. Let $\mathcal{P}$ be a property of morphisms of algebraic spaces which satisfies conditions (1), (2) and (3) of the lemma. By Lemma 74.14.2 we see that $\mathcal{P}$ is stable under precomposing with étale morphisms. By Lemma 74.10.2 we see that $\mathcal{P}$ is stable under smooth base change. Hence it suffices to prove part (3) of Definition 74.20.1 holds.

More precisely, suppose that $f : X \to Y$ is a morphism of algebraic spaces over $S$ which satisfies Definition 74.20.1 part (3)(b). In other words, for every $x \in X$ there exists a smooth morphism $b_ x : V_ x \to Y$, an étale morphism $U_ x \to V_ x \times _ Y X$, and a point $u_ x \in |U_ x|$ mapping to $x$ such that $h_ x : U_ x \to V_ x$ has $\mathcal{P}$. The proof of the lemma is complete once we show that $f$ has $\mathcal{P}$.

Let $a_ x : U_ x \to X$ be the composition $U_ x \to V_ x \times _ Y X \to X$. Set $U = \coprod U_ x$, $a = \coprod a_ x$, $V = \coprod V_ x$, $b = \coprod b_ x$, and $h = \coprod h_ x$. We obtain a commutative diagram

\[ \xymatrix{ U \ar[d]_ a \ar[r]_ h & V \ar[d]^ b \\ X \ar[r]^ f & Y } \]

with $b$ smooth, $U \to V \times _ Y X$ étale, $a$ surjective. Note that $h$ has $\mathcal{P}$ as each $h_ x$ does and $\mathcal{P}$ is smooth local on the target. In the next paragraph we prove that we may assume $U, V, X, Y$ are schemes; we encourage the reader to skip it.

Let $X, Y, U, V, a, b, f, h$ be as in the previous paragraph. We have to show $f$ has $\mathcal{P}$. Let $X' \to X$ be a surjective étale morphism with $X_ i$ a scheme. Set $U' = X' \times _ X U$. Then $U' \to X'$ is surjective and $U' \to X' \times _ Y V$ is étale. Since $\mathcal{P}$ is étale local on the source, we see that $U' \to V$ has $\mathcal{P}$ and that it suffices to show that $X' \to Y$ has $\mathcal{P}$. In other words, we may assume that $X$ is a scheme. Next, choose a surjective étale morphism $Y' \to Y$ with $Y'$ a scheme. Set $V' = V \times _ Y Y'$, $X' = X \times _ Y Y'$, and $U' = U \times _ Y Y'$. Then $U' \to X'$ is surjective and $U' \to X' \times _{Y'} V'$ is étale. Since $\mathcal{P}$ is smooth local on the target, we see that $U' \to V'$ has $\mathcal{P}$ and that it suffices to prove $X' \to Y'$ has $\mathcal{P}$. Thus we may assume both $X$ and $Y$ are schemes. Choose a surjective étale morphism $V' \to V$ with $V'$ a scheme. Set $U' = U \times _ V V'$. Then $U' \to X$ is surjective and $U' \to X \times _ Y V'$ is étale. Since $\mathcal{P}$ is smooth local on the source, we see that $U' \to V'$ has $\mathcal{P}$. Thus we may replace $U, V$ by $U', V'$ and assume $X, Y, V$ are schemes. Finally, we replace $U$ by a scheme surjective étale over $U$ and we see that we may assume $U, V, X, Y$ are all schemes.

If $U, V, X, Y$ are schemes, then $f$ has $\mathcal{P}$ by Descent, Lemma 35.32.11. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CG2. Beware of the difference between the letter 'O' and the digit '0'.