Lemma 38.31.5. Let $S$ be a scheme. Let $U \subset W \subset S$ be open subschemes. Let $f : X \to W$ be a morphism and let $s : U \to X$ be a morphism such that $f \circ s = \text{id}_ U$. Assume

$f$ is proper,

$S$ is quasi-compact and quasi-separated, and

$U$ and $W$ are quasi-compact.

Then there exists a $U$-admissible blowup $b : S' \to S$ and a morphism $s' : b^{-1}(W) \to X$ extending $s$ with $f \circ s' = b|_{b^{-1}(W)}$.

## Comments (0)