Lemma 75.19.1. Let $S$ be a scheme. Let $X$ be a quasi-compact and quasi-separated algebraic space over $S$. The inclusion functor $D_\mathit{QCoh}(\mathcal{O}_ X) \to D(\mathcal{O}_ X)$ has a right adjoint.
First proof. We will use the induction principle in Lemma 75.9.3 to prove this. If $D(\mathit{QCoh}(\mathcal{O}_ X)) \to D_\mathit{QCoh}(\mathcal{O}_ X)$ is an equivalence, then the lemma is true because the functor $RQ_ X$ of Section 75.11 is a right adjoint to the functor $D(\mathit{QCoh}(\mathcal{O}_ X)) \to D(\mathcal{O}_ X)$. In particular, our lemma is true for affine algebraic spaces, see Lemma 75.11.3. Thus we see that it suffices to show: if $(U \subset X, f : V \to X)$ is an elementary distinguished square with $U$ quasi-compact and $V$ affine and the lemma holds for $U$, $V$, and $U \times _ X V$, then the lemma holds for $X$.
The adjoint exists if and only if for every object $K$ of $D(\mathcal{O}_ X)$ we can find a distinguished triangle
in $D(\mathcal{O}_ X)$ such that $E'$ is in $D_\mathit{QCoh}(\mathcal{O}_ X)$ and such that $\mathop{\mathrm{Hom}}\nolimits (M, K) = 0$ for all $M$ in $D_\mathit{QCoh}(\mathcal{O}_ X)$. See Derived Categories, Lemma 13.40.7. Consider the distinguished triangle
in $D(\mathcal{O}_ X)$ of Lemma 75.10.2. By Derived Categories, Lemma 13.40.5 it suffices to construct the desired distinguished triangles for $Rj_{U, *}E|_ U$, $Rj_{V, *}E|_ V$, and $Rj_{U \times _ X V, *}E|_{U \times _ X V}$. This reduces us to the statement discussed in the next paragraph.
Let $j : U \to X$ be an étale morphism corresponding with $U$ quasi-compact and quasi-separated and the lemma is true for $U$. Let $L$ be an object of $D(\mathcal{O}_ U)$. Then there exists a distinguished triangle
in $D(\mathcal{O}_ X)$ such that $E'$ is in $D_\mathit{QCoh}(\mathcal{O}_ X)$ and such that $\mathop{\mathrm{Hom}}\nolimits (M, K) = 0$ for all $M$ in $D_\mathit{QCoh}(\mathcal{O}_ X)$. To see this we choose a distinguished triangle
in $D(\mathcal{O}_ U)$ such that $L'$ is in $D_\mathit{QCoh}(\mathcal{O}_ U)$ and such that $\mathop{\mathrm{Hom}}\nolimits (N, Q) = 0$ for all $N$ in $D_\mathit{QCoh}(\mathcal{O}_ U)$. This is possible because the statement in Derived Categories, Lemma 13.40.7 is an if and only if. We obtain a distinguished triangle
in $D(\mathcal{O}_ X)$. Observe that $Rj_*L'$ is in $D_\mathit{QCoh}(\mathcal{O}_ X)$ by Lemma 75.6.1. On the other hand, if $M$ in $D_\mathit{QCoh}(\mathcal{O}_ X)$, then
because $Lj^*M$ is in $D_\mathit{QCoh}(\mathcal{O}_ U)$ by Lemma 75.5.5. This finishes the proof. $\square$
Second proof. The adjoint exists by Derived Categories, Proposition 13.38.2. The hypotheses are satisfied: First, note that $D_\mathit{QCoh}(\mathcal{O}_ X)$ has direct sums and direct sums commute with the inclusion functor (Lemma 75.5.3). On the other hand, $D_\mathit{QCoh}(\mathcal{O}_ X)$ is compactly generated because it has a perfect generator Theorem 75.15.4 and because perfect objects are compact by Proposition 75.16.1. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)