Lemma 71.4.8. With notation and assumptions as in Lemma 71.4.7. Assume $g$ is locally quasi-finite, or more generally that for every $y' \in |Y'|$ the transcendence degree of $y'/g(y')$ is $0$. Then $\text{Ass}_{X'/Y'}(\mathcal{F}')$ is the inverse image of $\text{Ass}_{X/Y}(\mathcal{F})$.
Proof. The transcendence degree of a point over its image is defined in Morphisms of Spaces, Definition 67.33.1. Let $x' \in |X'|$ with image $x \in |X|$. Choose a scheme $V$ and a surjective étale morphism $V \to Y$. Choose a scheme $U$ and a surjective étale morphism $U \to V \times _ Y X$. Choose a scheme $V'$ and a surjective étale morphism $V' \to V \times _ Y Y'$. Then $U' = V' \times _ V U$ is a scheme and the morphism $U' \to X'$ is surjective and étale. Choose $u \in U$ mapping to $x$. Denote $v \in V$ the image of $u$. Then $x \in \text{Ass}_{X/Y}(\mathcal{F})$ is equivalent to $u \in \text{Ass}(\mathcal{F}|_{U_ v})$ by definition. Choose a point $u' \in U'$ mapping to $x' \in |X'|$ and to $u \in U$ (possible by Properties of Spaces, Lemma 66.4.3). Let $v' \in V'$ be the image of $u'$. Then $x' \in \text{Ass}_{X'/Y'}(\mathcal{F}')$ is equivalent to $u' \in \text{Ass}(\mathcal{F}'|_{U'_{v'}})$ by definition. Now the lemma follows from the discussion in Divisors, Remark 31.7.4 applied to $u' \in \mathop{\mathrm{Spec}}(\kappa (v') \otimes _{\kappa (v)} \kappa (u))$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)