Lemma 71.4.9. Let S be a scheme. Let f : X \to Y be a morphism of algebraic spaces over S. Let i : Z \to X be a finite morphism. Let \mathcal{G} be a quasi-coherent \mathcal{O}_ Z-module. Then \text{WeakAss}_{X/Y}(i_*\mathcal{G}) = i(\text{WeakAss}_{Z/Y}(\mathcal{G})).
Proof. Follows from the case of schemes (Divisors, Lemma 31.8.3) by étale localization. Details omitted. \square
Comments (0)