The Stacks project

Lemma 71.4.10. Let $Y$ be a scheme. Let $X$ be an algebraic space of finite presentation over $Y$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module of finite presentation. Let $U \subset X$ be an open subspace such that $U \to Y$ is quasi-compact. Then the set

\[ E = \{ y \in Y \mid \text{Ass}_{X_ y}(\mathcal{F}_ y) \subset |U_ y|\} \]

is locally constructible in $Y$.

Proof. Note that since $Y$ is a scheme, it makes sense to take the fibres $X_ y = \mathop{\mathrm{Spec}}(\kappa (y)) \times _ Y X$. (Also, by our definitions, the set $\text{Ass}_{X_ y}(\mathcal{F}_ y)$ is exactly the fibre of $\text{Ass}_{X/Y}(\mathcal{F}) \to Y$ over $y$, but we won't need this.) The question is local on $Y$, indeed, we have to show that $E$ is constructible if $Y$ is affine. In this case $X$ is quasi-compact. Choose an affine scheme $W$ and a surjective étale morphism $\varphi : W \to X$. Then $\text{Ass}_{X_ y}(\mathcal{F}_ y)$ is the image of $\text{Ass}_{W_ y}(\varphi ^*\mathcal{F}_ y)$ for all $y \in Y$. Hence the lemma follows from the case of schemes for the open $\varphi ^{-1}(U) \subset W$ and the morphism $W \to Y$. The case of schemes is More on Morphisms, Lemma 37.25.5. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CVV. Beware of the difference between the letter 'O' and the digit '0'.