Lemma 77.4.3. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$ which is locally of finite type. Let $x \in |X|$ with image $y \in |Y|$. Let $\mathcal{F}$ be a finite type quasi-coherent sheaf on $X$. Let $\mathcal{G}$ be a quasi-coherent sheaf on $Y$. If $\mathcal{F}$ is flat at $x$ over $Y$, then
Proof. Choose a commutative diagram
where $U$ and $V$ are schemes and the vertical arrows are surjective étale. Choose $u \in U$ mapping to $x$. Let $\mathcal{E} = \mathcal{F}|_ U$ and $\mathcal{H} = \mathcal{G}|_ V$. Let $v \in V$ be the image of $u$. Then $x \in \text{WeakAss}_ X(\mathcal{F} \otimes _{\mathcal{O}_ X} f^*\mathcal{G})$ if and only if $u \in \text{WeakAss}_ X(\mathcal{E} \otimes _{\mathcal{O}_ X} g^*\mathcal{H})$ by Divisors on Spaces, Definition 71.2.2. Similarly, $y \in \text{WeakAss}_ Y(\mathcal{G})$ if and only if $v \in \text{WeakAss}_ V(\mathcal{H})$. Finally, we have $x \in \text{Ass}_{X/Y}(\mathcal{F})$ if and only if $u \in \text{Ass}_{U_ v}(\mathcal{E}|_{U_ v})$ by Divisors on Spaces, Definition 71.4.5. Observe that flatness of $\mathcal{F}$ at $x$ is equivalent to flatness of $\mathcal{E}$ at $u$, see Morphisms of Spaces, Definition 67.31.2. The equivalence for $g : U \to V$, $\mathcal{E}$, $\mathcal{H}$, $u$, and $v$ is More on Flatness, Lemma 38.13.3. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)