The Stacks project

Lemma 38.20.9. Let $f : X \to S$ be a morphism of schemes which is locally of finite type. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module of finite type. Let $n \geq 0$. The following are equivalent

  1. for $s \in S$ the closed subset $Z \subset X_ s$ of points where $\mathcal{F}$ is not flat over $S$ (see Lemma 38.10.4) satisfies $\dim (Z) < n$, and

  2. for $x \in X$ such that $\mathcal{F}$ is not flat at $x$ over $S$ we have $\text{trdeg}_{\kappa (f(x))}(\kappa (x)) < n$.

If this is true, then it remains true after any base change.

Proof. Let $x \in X$ be a point over $s \in S$. Then the dimension of the closure of $\{ x\} $ in $X_ s$ is $\text{trdeg}_{\kappa (s)}(\kappa (x))$ by Varieties, Lemma 33.20.3. Conversely, if $Z \subset X_ s$ is a closed subset of dimension $d$, then there exists a point $x \in Z$ with $\text{trdeg}_{\kappa (s)}(\kappa (x)) = d$ (same reference). Therefore the equivalence of (1) and (2) holds (even fibre by fibre). The statement on base change follows from Morphisms, Lemmas 29.25.7 and 29.28.3. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 38.20: Flattening functors

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CWF. Beware of the difference between the letter 'O' and the digit '0'.