Lemma 74.25.7. Let $A$ be a ring. Let $X$ be an algebraic space over $A$ which is quasi-compact and quasi-separated. Let $K \in D^-_\mathit{QCoh}(\mathcal{O}_ X)$. If $R\Gamma (X, E \otimes ^\mathbf {L} K)$ is pseudo-coherent in $D(A)$ for every perfect $E$ in $D(\mathcal{O}_ X)$, then $R\Gamma (X, E \otimes ^\mathbf {L} K)$ is pseudo-coherent in $D(A)$ for every pseudo-coherent $E$ in $D(\mathcal{O}_ X)$.

**Proof.**
There exists an integer $N$ such that $R\Gamma (X, -) : D_\mathit{QCoh}(\mathcal{O}_ X) \to D(A)$ has cohomological dimension $N$ as explained in Lemma 74.6.1. Let $b \in \mathbf{Z}$ be such that $H^ i(K) = 0$ for $i > b$. Let $E$ be pseudo-coherent on $X$. It suffices to show that $R\Gamma (X, E \otimes ^\mathbf {L} K)$ is $m$-pseudo-coherent for every $m$. Choose an approximation $P \to E$ by a perfect complex $P$ of $(X, E, m - N - 1 - b)$. This is possible by Theorem 74.14.7. Choose a distinguished triangle

in $D_\mathit{QCoh}(\mathcal{O}_ X)$. The cohomology sheaves of $C$ are zero in degrees $\geq m - N - 1 - b$. Hence the cohomology sheaves of $C \otimes ^\mathbf {L} K$ are zero in degrees $\geq m - N - 1$. Thus the cohomology of $R\Gamma (X, C \otimes ^\mathbf {L} K)$ are zero in degrees $\geq m - 1$. Hence

is an isomorphism on cohomology in degrees $\geq m$. By assumption the source is pseudo-coherent. We conclude that $R\Gamma (X, E \otimes ^\mathbf {L} K)$ is $m$-pseudo-coherent as desired. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)