Lemma 73.25.6. Let $R$ be a ring. Let $X$ be an algebraic space and let $f : X \to \mathop{\mathrm{Spec}}(R)$ be proper, flat, and of finite presentation. Let $(M_ n)$ be an inverse system of $R$-modules with surjective transition maps. Then the canonical map

$\mathcal{O}_ X \otimes _ R (\mathop{\mathrm{lim}}\nolimits M_ n) \longrightarrow \mathop{\mathrm{lim}}\nolimits \mathcal{O}_ X \otimes _ R M_ n$

induces an isomorphism from the source to $DQ_ X$ applied to the target.

Proof. The statement means that for any object $E$ of $D_\mathit{QCoh}(\mathcal{O}_ X)$ the induced map

$\mathop{\mathrm{Hom}}\nolimits (E, \mathcal{O}_ X \otimes _ R (\mathop{\mathrm{lim}}\nolimits M_ n)) \longrightarrow \mathop{\mathrm{Hom}}\nolimits (E, \mathop{\mathrm{lim}}\nolimits \mathcal{O}_ X \otimes _ R M_ n)$

is an isomorphism. Since $D_\mathit{QCoh}(\mathcal{O}_ X)$ has a perfect generator (Theorem 73.15.4) it suffices to check this for perfect $E$. By Lemma 73.5.4 we have $\mathop{\mathrm{lim}}\nolimits \mathcal{O}_ X \otimes _ R M_ n = R\mathop{\mathrm{lim}}\nolimits \mathcal{O}_ X \otimes _ R M_ n$. The exact functor $R\mathop{\mathrm{Hom}}\nolimits _ X(E, -) : D_\mathit{QCoh}(\mathcal{O}_ X) \to D(R)$ of Cohomology on Sites, Section 21.35 commutes with products and hence with derived limits, whence

$R\mathop{\mathrm{Hom}}\nolimits _ X(E, \mathop{\mathrm{lim}}\nolimits \mathcal{O}_ X \otimes _ R M_ n) = R\mathop{\mathrm{lim}}\nolimits R\mathop{\mathrm{Hom}}\nolimits _ X(E, \mathcal{O}_ X \otimes _ R M_ n)$

Let $E^\vee$ be the dual perfect complex, see Cohomology on Sites, Lemma 21.46.4. We have

$R\mathop{\mathrm{Hom}}\nolimits _ X(E, \mathcal{O}_ X \otimes _ R M_ n) = R\Gamma (X, E^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} Lf^*M_ n) = R\Gamma (X, E^\vee ) \otimes _ R^\mathbf {L} M_ n$

by Lemma 73.20.1. From Lemma 73.25.4 we see $R\Gamma (X, E^\vee )$ is a perfect complex of $R$-modules. In particular it is a pseudo-coherent complex and by More on Algebra, Lemma 15.96.3 we obtain

$R\mathop{\mathrm{lim}}\nolimits R\Gamma (X, E^\vee ) \otimes _ R^\mathbf {L} M_ n = R\Gamma (X, E^\vee ) \otimes _ R^\mathbf {L} \mathop{\mathrm{lim}}\nolimits M_ n$

as desired. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).