Lemma 75.5.4. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $(K_ n)$ be an inverse system of $D_\mathit{QCoh}(\mathcal{O}_ X)$ with derived limit $K = R\mathop{\mathrm{lim}}\nolimits K_ n$ in $D(\mathcal{O}_ X)$. Assume $H^ q(K_{n + 1}) \to H^ q(K_ n)$ is surjective for all $q \in \mathbf{Z}$ and $n \geq 1$. Then
$H^ q(K) = \mathop{\mathrm{lim}}\nolimits H^ q(K_ n)$,
$R\mathop{\mathrm{lim}}\nolimits H^ q(K_ n) = \mathop{\mathrm{lim}}\nolimits H^ q(K_ n)$, and
for every affine open $U \subset X$ we have $H^ p(U, \mathop{\mathrm{lim}}\nolimits H^ q(K_ n)) = 0$ for $p > 0$.
Comments (0)