Lemma 76.11.2. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces which is locally of finite type. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module of finite type. Let $n \geq 0$. The following are equivalent

for some commutative diagram

\[ \xymatrix{ U \ar[d]_\varphi \ar[r] & V \ar[d] \\ X \ar[r] & Y } \]with surjective, étale vertical arrows where $U$ and $V$ are schemes, the sheaf $\varphi ^*\mathcal{F}$ is flat over $V$ in dimensions $\geq n$ (More on Flatness, Definition 38.20.10),

for every commutative diagram

\[ \xymatrix{ U \ar[d]_\varphi \ar[r] & V \ar[d] \\ X \ar[r] & Y } \]with étale vertical arrows where $U$ and $V$ are schemes, the sheaf $\varphi ^*\mathcal{F}$ is flat over $V$ in dimensions $\geq n$, and

for $x \in |X|$ such that $\mathcal{F}$ is not flat at $x$ over $Y$ the transcendence degree of $x/f(x)$ is $< n$ (Morphisms of Spaces, Definition 66.33.1).

If this is true, then it remains true after any base change $Y' \to Y$.

## Comments (0)