Situation 77.11.4. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$ which is locally of finite type. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module of finite type. For any scheme $T$ over $Y$ we will denote $\mathcal{F}_ T$ the base change of $\mathcal{F}$ to $T$, in other words, $\mathcal{F}_ T$ is the pullback of $\mathcal{F}$ via the projection morphism $X_ T = X \times _ Y T \to X$. Note that $f_ T : X_ T \to T$ is of finite type and that $\mathcal{F}_ T$ is an $\mathcal{O}_{X_ T}$-module of finite type (Morphisms of Spaces, Lemma 67.23.3 and Modules on Sites, Lemma 18.23.4). Let $n \geq 0$. By Definition 77.11.3 and Lemma 77.11.2 we obtain a functor

77.11.4.1
$$\label{spaces-flat-equation-flat-dimension-n} F_ n : (\mathit{Sch}/Y)^{opp} \longrightarrow \textit{Sets}, \quad T \longrightarrow \left\{ \begin{matrix} \{ *\} & \text{if }\mathcal{F}_ T\text{ is flat over }T\text{ in }\dim \geq n, \\ \emptyset & \text{else.} \end{matrix} \right.$$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).