Situation 77.11.4. Let S be a scheme. Let f : X \to Y be a morphism of algebraic spaces over S which is locally of finite type. Let \mathcal{F} be a quasi-coherent \mathcal{O}_ X-module of finite type. For any scheme T over Y we will denote \mathcal{F}_ T the base change of \mathcal{F} to T, in other words, \mathcal{F}_ T is the pullback of \mathcal{F} via the projection morphism X_ T = X \times _ Y T \to X. Note that f_ T : X_ T \to T is of finite type and that \mathcal{F}_ T is an \mathcal{O}_{X_ T}-module of finite type (Morphisms of Spaces, Lemma 67.23.3 and Modules on Sites, Lemma 18.23.4). Let n \geq 0. By Definition 77.11.3 and Lemma 77.11.2 we obtain a functor
77.11.4.1
\begin{equation} \label{spaces-flat-equation-flat-dimension-n} F_ n : (\mathit{Sch}/Y)^{opp} \longrightarrow \textit{Sets}, \quad T \longrightarrow \left\{ \begin{matrix} \{ *\}
& \text{if }\mathcal{F}_ T\text{ is flat over }T\text{ in }\dim \geq n,
\\ \emptyset
& \text{else.}
\end{matrix} \right. \end{equation}
Comments (0)