Situation 77.11.4. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$ which is locally of finite type. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module of finite type. For any scheme $T$ over $Y$ we will denote $\mathcal{F}_ T$ the base change of $\mathcal{F}$ to $T$, in other words, $\mathcal{F}_ T$ is the pullback of $\mathcal{F}$ via the projection morphism $X_ T = X \times _ Y T \to X$. Note that $f_ T : X_ T \to T$ is of finite type and that $\mathcal{F}_ T$ is an $\mathcal{O}_{X_ T}$-module of finite type (Morphisms of Spaces, Lemma 67.23.3 and Modules on Sites, Lemma 18.23.4). Let $n \geq 0$. By Definition 77.11.3 and Lemma 77.11.2 we obtain a functor
77.11.4.1
\begin{equation} \label{spaces-flat-equation-flat-dimension-n} F_ n : (\mathit{Sch}/Y)^{opp} \longrightarrow \textit{Sets}, \quad T \longrightarrow \left\{ \begin{matrix} \{ *\}
& \text{if }\mathcal{F}_ T\text{ is flat over }T\text{ in }\dim \geq n,
\\ \emptyset
& \text{else.}
\end{matrix} \right. \end{equation}
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)