Processing math: 100%

The Stacks project

Lemma 77.12.7. In Situation 77.12.1 let K be as in Lemma 77.12.2. Let W \subset X be as in Lemma 77.12.6. Set \mathcal{F} = H^0(K)|_ W. Then, after possibly shrinking the open W, the support of \mathcal{F} is proper over A.

Proof. Fix n \geq 1. Let I_ n = \mathop{\mathrm{Ker}}(A \to A_ n). By More on Algebra, Lemma 15.11.3 the pair (A, I_ n) is henselian. Let Z \subset W be the scheme theoretic support of \mathcal{F}. This is a closed subspace as \mathcal{F} is of finite presentation. By part (3) of Lemma 77.12.6 we see that Z \times _{\mathop{\mathrm{Spec}}(A)} \mathop{\mathrm{Spec}}(A_ n) is equal to the support of \mathcal{F}_ n and hence proper over \mathop{\mathrm{Spec}}(A/I). By More on Morphisms of Spaces, Lemma 76.36.10 we can write Z = Z_1 \amalg Z_2 with Z_1, Z_2 open and closed in Z, with Z_1 proper over A, and with Z_1 \times _{\mathop{\mathrm{Spec}}(A)} \mathop{\mathrm{Spec}}(A/I_ n) equal to the support of \mathcal{F}_ n. In other words, |Z_2| does not meet X_0. Hence after replacing W by W \setminus Z_2 we obtain the lemma. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.