The Stacks project

Lemma 76.23.7. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$ which is locally of finite presentation. Let $\mathcal{F}$ be a finitely presented $\mathcal{O}_ X$-module. Let $x \in |X|$ with image $y \in |Y|$. If $\mathcal{F}$ is flat at $x$ over $Y$, then the following are equivalent

  1. $(\mathcal{F}_{\overline{y}})_{\overline{x}}$ is a flat $\mathcal{O}_{X_{\overline{y}}, \overline{x}}$-module,

  2. $(\mathcal{F}_{\overline{y}})_{\overline{x}}$ is a free $\mathcal{O}_{X_{\overline{y}}, \overline{x}}$-module,

  3. $\mathcal{F}_{\overline{y}}$ is finite free in an étale neighbourhood of $\overline{x}$ in $X_{\overline{y}}$, and

  4. $\mathcal{F}$ is finite free in an étale neighbourhood of $x$ in $X$.

Here $\overline{x}$ is a geometric point of $X$ lying over $x$ and $\overline{y} = f \circ \overline{x}$.

Proof. Pick a commutative diagram

\[ \xymatrix{ U \ar[d] \ar[r] & V \ar[d] \\ X \ar[r] & Y } \]

where $U$ and $V$ are schemes and the vertical arrows are étale such that there is a point $u \in U$ mapping to $x$. Let $v \in V$ be the image of $u$. Applying Lemma 76.23.1 to $\text{id} : X \to X$ over $Y$ we see that (1) translates into the condition “$\mathcal{F}|_{U_ v}$ is flat over $U_ v$ at $u$”. In other words, (1) is equivalent to $(\mathcal{F}|_{U_ v})_ u$ being a flat $\mathcal{O}_{U_ v, u}$-module. By the case of schemes (More on Morphisms, Lemma 37.16.7), we find that this implies that $\mathcal{F}|_ U$ is finite free in an open neighbourhood of $u$. In this way we see that (1) implies (4). The implications (4) $\Rightarrow $ (3) and (2) $\Rightarrow $ (1) are immediate. For the implication (3) $\Rightarrow $ (2) use the description of local rings and stalks in Properties of Spaces, Lemmas 66.22.1 and 66.29.4. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CZS. Beware of the difference between the letter 'O' and the digit '0'.