Lemma 36.11.5. Let $X$ be a locally Noetherian scheme. If $L$ is in $D^+_{\textit{Coh}}(\mathcal{O}_ X)$ and $K$ in $D^-_{\textit{Coh}}(\mathcal{O}_ X)$, then $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L)$ is in $D^+_{\textit{Coh}}(\mathcal{O}_ X)$.
Proof. It suffices to prove this when $X$ is the spectrum of a Noetherian ring $A$. By Lemma 36.10.3 we see that $K$ is pseudo-coherent. Then we can use Lemma 36.10.8 to translate the problem into the following algebra problem: for $L \in D^+_{\textit{Coh}}(A)$ and $K$ in $D^-_{\textit{Coh}}(A)$, then $R\mathop{\mathrm{Hom}}\nolimits _ A(K, L)$ is in $D^+_{\textit{Coh}}(A)$. Since $L$ is bounded below and $K$ is bounded below there is a convergent spectral sequence
and there are convergent spectral sequences
See Injectives, Remarks 19.13.9 and 19.13.11. This finishes the proof as the modules $\mathop{\mathrm{Ext}}\nolimits ^ p_ A(M, N)$ are finite for finite $A$-modules $M$, $N$ by Algebra, Lemma 10.71.9. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (1)
Comment #9882 by Aji on