Lemma 75.8.3. Let $S$ be a scheme. Let $X$ be a locally Noetherian algebraic space over $S$. If $L$ is in $D^+_{\textit{Coh}}(\mathcal{O}_ X)$ and $K$ in $D^-_{\textit{Coh}}(\mathcal{O}_ X)$, then $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L)$ is in $D^+_{\textit{Coh}}(\mathcal{O}_ X)$.
Proof. We can check whether an object of $D(\mathcal{O}_ X)$ is in $D_{\textit{Coh}}(\mathcal{O}_ X)$ étale locally on $X$, see Cohomology of Spaces, Lemma 69.12.2. Hence this lemma follows from the case of schemes, see Derived Categories of Schemes, Lemma 36.11.5. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)