Lemma 68.16.9. Let $S$ be a scheme. Let $X$ be a Noetherian algebraic space over $S$. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. Assume that for every coherent $\mathcal{O}_ X$-module $\mathcal{F}$ there exists an $n \geq 1$ such that $H^1(X, \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n}) = 0$. Then $X$ is a scheme and $\mathcal{L}$ is ample on $X$.

**Proof.**
Let $s \in H^0(X, \mathcal{L}^{\otimes d})$ be a global section. Let $U \subset X$ be the open subspace over which $s$ is a generator of $\mathcal{L}^{\otimes d}$. In particular we have $\mathcal{L}^{\otimes d}|_ U \cong \mathcal{O}_ U$. We claim that $U$ is affine.

Proof of the claim. We will show that $H^1(U, \mathcal{F}) = 0$ for every quasi-coherent $\mathcal{O}_ U$-module $\mathcal{F}$. This will prove the claim by Proposition 68.16.7. Denote $j : U \to X$ the inclusion morphism. Since étale locally the morphism $j$ is affine (by Morphisms, Lemma 29.11.10) we see that $j$ is affine (Morphisms of Spaces, Lemma 66.20.3). Hence we have

by Lemma 68.8.2 (and Cohomology on Sites, Lemma 21.14.6). Write $j_*\mathcal{F} = \mathop{\mathrm{colim}}\nolimits \mathcal{F}_ i$ as a filtered colimit of coherent $\mathcal{O}_ X$-modules, see Lemma 68.15.1. Then

by Lemma 68.5.1. Thus it suffices to show that $H^1(X, \mathcal{F}_ i)$ maps to zero in $H^1(U, j^*\mathcal{F}_ i)$. By assumption there exists an $n \geq 1$ such that

Hence there exists an $a \geq 0$ such that $H^1(X, \mathcal{F}_ i \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes ad}) = 0$. On the other hand, the map

is an isomorphism after restriction to $U$. Contemplating the commutative diagram

we conclude that the map $H^1(X, \mathcal{F}_ i) \to H^1(U, j^*\mathcal{F}_ i)$ is zero and the claim holds.

Let $x \in |X|$ be a closed point. By Decent Spaces, Lemma 67.14.6 we can represent $x$ by a closed immersion $i : \mathop{\mathrm{Spec}}(k) \to X$ (this also uses that a quasi-separated algebraic space is decent, see Decent Spaces, Section 67.6). Thus $\mathcal{O}_ X \to i_*\mathcal{O}_{\mathop{\mathrm{Spec}}(k)}$ is surjective. Let $\mathcal{I} \subset \mathcal{O}_ X$ be the kernel and choose $d \geq 1$ such that $H^1(X, \mathcal{I} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes d}) = 0$. Then

is surjective by the long exact cohomology sequence. Hence there exists an $s \in H^0(X, \mathcal{L}^{\otimes d})$ such that $x \in U$ where $U$ is the open subspace corresponding to $s$ as above. Thus $x$ is in the schematic locus (see Properties of Spaces, Lemma 65.13.1) of $X$ by our claim.

To conclude that $X$ is a scheme, it suffices to show that any open subset of $|X|$ which contains all the closed points is equal to $|X|$. This follows from the fact that $|X|$ is a Noetherian topological space, see Properties of Spaces, Lemma 65.24.3. Finally, if $X$ is a scheme, then we can apply Cohomology of Schemes, Lemma 30.3.3 to conclude that $\mathcal{L}$ is ample. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)