Lemma 21.28.7. Let f : (\mathcal{C}, \mathcal{O}) \to (\mathcal{C}', \mathcal{O}') be a morphism of ringed sites. Let \mathcal{A} \subset \textit{Mod}(\mathcal{O}) and \mathcal{A}' \subset \textit{Mod}(\mathcal{O}') be weak Serre subcategories. Assume
f is flat,
f^* induces an equivalence of categories \mathcal{A}' \to \mathcal{A},
\mathcal{F}' \to Rf_*f^*\mathcal{F}' is an isomorphism for \mathcal{F}' \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A}'),
\mathcal{C}, \mathcal{O}, \mathcal{A} satisfy the assumption of Situation 21.25.1,
f : (\mathcal{C}, \mathcal{O}) \to (\mathcal{C}', \mathcal{O}') and \mathcal{A} satisfy the assumption of Situation 21.25.5.
Then f^* : D_{\mathcal{A}'}(\mathcal{O}') \to D_\mathcal {A}(\mathcal{O}) is an equivalence of categories with quasi-inverse given by Rf_* : D_\mathcal {A}(\mathcal{O}) \to D_{\mathcal{A}'}(\mathcal{O}').
Comments (0)