Lemma 21.28.7. Let $f : (\mathcal{C}, \mathcal{O}) \to (\mathcal{C}', \mathcal{O}')$ be a morphism of ringed sites. Let $\mathcal{A} \subset \textit{Mod}(\mathcal{O})$ and $\mathcal{A}' \subset \textit{Mod}(\mathcal{O}')$ be weak Serre subcategories. Assume

$f$ is flat,

$f^*$ induces an equivalence of categories $\mathcal{A}' \to \mathcal{A}$,

$\mathcal{F}' \to Rf_*f^*\mathcal{F}'$ is an isomorphism for $\mathcal{F}' \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A}')$,

$\mathcal{C}, \mathcal{O}, \mathcal{A}$ satisfy the assumption of Situation 21.25.1,

$f : (\mathcal{C}, \mathcal{O}) \to (\mathcal{C}', \mathcal{O}')$ and $\mathcal{A}$ satisfy the assumption of Situation 21.25.5.

Then $f^* : D_{\mathcal{A}'}(\mathcal{O}') \to D_\mathcal {A}(\mathcal{O})$ is an equivalence of categories with quasi-inverse given by $Rf_* : D_\mathcal {A}(\mathcal{O}) \to D_{\mathcal{A}'}(\mathcal{O}')$.

## Comments (0)