The Stacks project

This is a version of [Lemma 2.1.10, six-I] with slightly changed hypotheses.

Lemma 21.25.6. Let $f : (\mathcal{C}, \mathcal{O}) \to (\mathcal{C}', \mathcal{O}')$ be a morphism of ringed sites. assume moreover there is an integer $N$ such that

  1. $\mathcal{C}, \mathcal{O}, \mathcal{A}$ satisfy the assumption of Situation 21.25.1,

  2. $f : (\mathcal{C}, \mathcal{O}) \to (\mathcal{C}', \mathcal{O}')$ and $\mathcal{A}$ satisfy the assumption of Situation 21.25.5,

  3. $R^ pf_*\mathcal{F} = 0$ for $p > N$ and $\mathcal{F} \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$,

Then for $K$ in $D_\mathcal {A}(\mathcal{O})$ the map $H^ j(Rf_*K) \to H^ j(Rf_*(\tau _{\geq -n}K))$ is an isomorphism for $j \geq N - n$.

Proof. Let $K$ be in $D_\mathcal {A}(\mathcal{O})$. By Lemma 21.25.2 we have $K = R\mathop{\mathrm{lim}}\nolimits \tau _{\geq -n}K$. By Lemma 21.23.3 we have $Rf_*K = R\mathop{\mathrm{lim}}\nolimits Rf_*(\tau _{\geq -n}K)$. Let $V' \in \mathcal{B}'$ and let $\{ V'_ i \to V'\} $ be an element of $\text{Cov}_{V'}$. Then we consider

\[ H^ j(V'_ i, Rf_*K) = H^ j(u(V'_ i), K) \quad \text{and}\quad H^ j(V'_ i, Rf_*(\tau _{\geq -n}K)) = H^ j(u(V'_ i), \tau _{\geq -n}K) \]

The assumption in Situation 21.25.5 implies that the last group is independent of $n$ for $n$ large enough depending on $j$ and $d_{V'}$. Some details omitted. We apply this for $j$ and $j - 1$ and via Lemma 21.23.2 this gives that

\[ H^ j(V'_ i, Rf_*K) = \mathop{\mathrm{lim}}\nolimits H^ j(V'_ i, Rf_*(\tau _{\geq -n} K)) \]

and the system on the right is constant for $n$ larger than a constant depending only on $d_{V'}$ and $j$. Thus Lemma 21.23.6 implies that

\[ H^ j(Rf_*K)(V') \longrightarrow \left(\mathop{\mathrm{lim}}\nolimits H^ j(Rf_*(\tau _{\geq -n}K))\right)(V') \]

is injective. Since the elements $V' \in \mathcal{B}'$ cover every object of $\mathcal{C}'$ we conclude that the map $H^ j(Rf_*K) \to \mathop{\mathrm{lim}}\nolimits H^ j(Rf_*(\tau _{\geq -n}K))$ is injective. The spectral sequence

\[ E_2^{p, q} = R^ pf_*H^ q(\tau _{\geq -n}K) \]

converging to $H^{p + q}(Rf_*(\tau _{\geq -n}K))$ (Derived Categories, Lemma 13.21.3) and assumption (3) show that $H^ j(Rf_*(\tau _{\geq -n}K))$ is constant for $n \geq N - j$. Hence $H^ j(Rf_*K) \to H^ j(Rf_*(\tau _{\geq -n}K))$ is injective for $j \geq N - n$.

Thus we proved the lemma with “isomorphism” in the last line of the lemma replaced by “injective”. However, now choose $j$ and $n$ with $j \geq N - n$. Then consider the distinguished triangle

\[ \tau _{\leq -n - 1}K \to K \to \tau _{\geq -n}K \to (\tau _{\leq -n - 1}K)[1] \]

See Derived Categories, Remark 13.12.4. Since $\tau _{\geq -n}\tau _{\leq -n -1}K = 0$, the injectivity already proven for $\tau _{-n - 1}K$ implies

\[ 0 = H^ j(Rf_*(\tau _{\leq -n - 1}K)) = H^{j + 1}(Rf_*(\tau _{\leq -n - 1}K)) = H^{j + 2}(Rf_*(\tau _{\leq -n - 1}K)) = \ldots \]

By the long exact cohomology sequence associated to the distinguished triangle

\[ Rf_*(\tau _{\leq -n - 1}K) \to Rf_*K \to Rf_*(\tau _{\geq -n}K) \to Rf_*(\tau _{\leq -n - 1}K)[1] \]

this implies that $H^ j(Rf_*K) \to H^ j(Rf_*(\tau _{\geq -n}K))$ is an isomorphism. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0D6W. Beware of the difference between the letter 'O' and the digit '0'.