The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

21.25 Bounded cohomological dimension

In this section we ask when a functor $Rf_*$ has bounded cohomological dimension. This is a rather subtle question when we consider unbounded complexes.

Situation 21.25.1. Let $\mathcal{C}$ be a site. Let $\mathcal{O}$ be a sheaf of rings on $\mathcal{C}$. Let $\mathcal{A} \subset \textit{Mod}(\mathcal{O})$ be a weak Serre subcategory. We assume the following is true: there exists a subset $\mathcal{B} \subset \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ such that

  1. every object of $\mathcal{C}$ has a covering whose members are in $\mathcal{B}$, and

  2. for every $V \in \mathcal{B}$ there exists an integer $d_ V$ and a cofinal system $\text{Cov}_ V$ of coverings of $V$ such that

    \[ H^ p(V_ i, \mathcal{F}) = 0 \text{ for } \{ V_ i \to V\} \in \text{Cov}_ V,\ p > d_ V, \text{ and } \mathcal{F} \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A}) \]

reference

Lemma 21.25.2. In Situation 21.25.1 for any $E \in D_\mathcal {A}(\mathcal{O})$ the canonical map $E \to R\mathop{\mathrm{lim}}\nolimits \tau _{\geq -n} E$ is an isomorphism in $D(\mathcal{O})$.

Proof. Follows immediately from Lemma 21.23.8. $\square$

Lemma 21.25.3. In Situation 21.25.1 let $(K_ n)$ be an inverse system in $D_\mathcal {A}^+(\mathcal{O})$. Assume that for every $j$ the inverse system $(H^ j(K_ n))$ in $\mathcal{A}$ is eventually constant with value $\mathcal{H}^ j$. Then $H^ j(R\mathop{\mathrm{lim}}\nolimits K_ n) = \mathcal{H}^ j$ for all $j$.

Proof. Let $V \in \mathcal{B}$. Let $\{ V_ i \to V\} $ be in the set $\text{Cov}_ V$ of Situation 21.25.1. Because $K_ n$ is bounded below there is a spectral sequence

\[ E_2^{p, q} = H^ p(V_ i, H^ q(K_ n)) \]

converging to $H^{p + q}(V_ i, K_ n)$. See Derived Categories, Lemma 13.21.3. Observe that $E_2^{p, q} = 0$ for $p > d_ V$ by assumption. Pick $n_0$ such that

\[ \begin{matrix} \mathcal{H}^{j + 1} & = & H^{j + 1}(K_ n), \\ \mathcal{H}^ j & = & H^ j(K_ n), \\ \ldots , \\ \mathcal{H}^{j - d_ V - 2} & = & H^{j - d_ V - 2}(K_ n) \end{matrix} \]

for all $n \geq n_0$. Comparing the spectral sequences above for $K_ n$ and $K_{n_0}$, we see that for $n \geq n_0$ the cohomology groups $H^{j - 1}(V_ i, K_ n)$ and $H^ j(V_ i, K_ n)$ are independent of $n$. It follows that the map on sections $H^ j(R\mathop{\mathrm{lim}}\nolimits K_ n)(V) \to H^ j(K_ n)(V)$ is injective for $n$ large enough (depending on $V$), see Lemma 21.23.6. Since every object of $\mathcal{C}$ can be covered by elements of $\mathcal{B}$, we conclude that the map $H^ j(R\mathop{\mathrm{lim}}\nolimits K_ n) \to \mathcal{H}^ j$ is injective.

Surjectivity is shown in a similar manner. Namely, pick $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ and $\gamma \in \mathcal{H}^ j(U)$. We want to lift $\gamma $ to a section of $H^ j(R\mathop{\mathrm{lim}}\nolimits K_ n)$ after replacing $U$ by the members of a covering. Hence we may assume $U = V \in \mathcal{B}$ by property (1) of Situation 21.25.1. Pick $n_0$ such that

\[ \begin{matrix} \mathcal{H}^{j + 1} & = & H^{j + 1}(K_ n), \\ \mathcal{H}^ j & = & H^ j(K_ n), \\ \ldots , \\ \mathcal{H}^{j - d_ V - 2} & = & H^{j - d_ V - 2}(K_ n) \end{matrix} \]

for all $n \geq n_0$. Choose an element $\{ V_ i \to V\} $ of $\text{Cov}_ V$ such that $\gamma |_{V_ i} \in \mathcal{H}^ j(V_ i) = H^ j(K_{n_0})(V_ i)$ lifts to an element $\gamma _{n_0, i} \in H^ j(V_ i, K_{n_0})$. This is possible because $H^ j(K_{n_0})$ is the sheafification of $U \mapsto H^ j(U, K_{n_0})$ by Lemma 21.21.3. By the discussion in the first paragraph of the proof we have that $H^{j - 1}(V_ i, K_ n)$ and $H^ j(V_ i, K_ n)$ are independent of $n \geq n_0$. Hence $\gamma _{n_0, i}$ lifts to an element $\gamma _ i \in H^ j(V_ i, R\mathop{\mathrm{lim}}\nolimits K_ n)$ by Lemma 21.23.2. This finishes the proof. $\square$

reference

Lemma 21.25.4. Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}')$ be a morphism of ringed topoi. Let $\mathcal{A} \subset \textit{Mod}(\mathcal{O})$ and $\mathcal{A}' \subset \textit{Mod}(\mathcal{O}')$ be weak Serre subcategories. Assume there is an integer $N$ such that

  1. $\mathcal{C}, \mathcal{O}, \mathcal{A}$ satisfy the assumption of Situation 21.25.1,

  2. $\mathcal{C}', \mathcal{O}', \mathcal{A}'$ satisfy the assumption of Situation 21.25.1,

  3. $R^ pf_*\mathcal{F} \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A}')$ for $p \geq 0$ and $\mathcal{F} \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$,

  4. $R^ pf_*\mathcal{F} = 0$ for $p > N$ and $\mathcal{F} \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$,

Then for $K$ in $D_\mathcal {A}(\mathcal{O})$ we have

  1. $Rf_*K$ is in $D_{\mathcal{A}'}(\mathcal{O}')$,

  2. the map $H^ j(Rf_*K) \to H^ j(Rf_*(\tau _{\geq -n}K))$ is an isomorphism for $j \geq N - n$.

Proof. By Lemma 21.25.2 we have $K = R\mathop{\mathrm{lim}}\nolimits \tau _{\geq -n}K$. By Lemma 21.23.3 we have $Rf_*K = R\mathop{\mathrm{lim}}\nolimits Rf_*\tau _{\geq -n}K$. The complexes $Rf_*\tau _{\geq -n}K$ are bounded below. The spectral sequence

\[ E_2^{p, q} = R^ pf_*H^ q(\tau _{\geq -n}K) \]

converging to $H^{p + q}(Rf_*\tau _{\geq -n}K)$ (Derived Categories, Lemma 13.21.3) and assumption (3) show that $Rf_*\tau _{\geq -n}K$ lies in $D^+_{\mathcal{A}'}(\mathcal{O}')$, see Homology, Lemma 12.21.11. Observe that for $m \geq n$ the map

\[ Rf_*(\tau _{\geq -m}K) \longrightarrow Rf_*(\tau _{\geq -n}K) \]

induces an isomorphism on cohomology sheaves in degrees $j \geq -n + N$ by the spectral sequences above. Hence we may apply Lemma 21.25.3 to conclude. $\square$

It turns out that we sometimes need a variant of the lemma above where the assumptions are sligthly different.

Situation 21.25.5. Let $f : (\mathcal{C}, \mathcal{O}) \to (\mathcal{C}', \mathcal{O}')$ be a morphism of ringed sites. Let $u : \mathcal{C}' \to \mathcal{C}$ be the corresponding continuous functor of sites. Let $\mathcal{A} \subset \textit{Mod}(\mathcal{O})$ be a weak Serre subcategory. We assume the following is true: there exists a subset $\mathcal{B}' \subset \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}')$ such that

  1. every object of $\mathcal{C}'$ has a covering whose members are in $\mathcal{B}'$, and

  2. for every $V' \in \mathcal{B}'$ there exists an integer $d_{V'}$ and a cofinal system $\text{Cov}_{V'}$ of coverings of $V'$ such that

    \[ H^ p(u(V'_ i), \mathcal{F}) = 0 \text{ for } \{ V'_ i \to V'\} \in \text{Cov}_{V'},\ p > d_{V'}, \text{ and } \mathcal{F} \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A}) \]

reference

Lemma 21.25.6. Let $f : (\mathcal{C}, \mathcal{O}) \to (\mathcal{C}', \mathcal{O}')$ be a morphism of ringed sites. assume moreover there is an integer $N$ such that

  1. $\mathcal{C}, \mathcal{O}, \mathcal{A}$ satisfy the assumption of Situation 21.25.1,

  2. $f : (\mathcal{C}, \mathcal{O}) \to (\mathcal{C}', \mathcal{O}')$ and $\mathcal{A}$ satisfy the assumption of Situation 21.25.5,

  3. $R^ pf_*\mathcal{F} = 0$ for $p > N$ and $\mathcal{F} \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$,

Then for $K$ in $D_\mathcal {A}(\mathcal{O})$ the map $H^ j(Rf_*K) \to H^ j(Rf_*(\tau _{\geq -n}K))$ is an isomorphism for $j \geq N - n$.

Proof. Let $K$ be in $D_\mathcal {A}(\mathcal{O})$. By Lemma 21.25.2 we have $K = R\mathop{\mathrm{lim}}\nolimits \tau _{\geq -n}K$. By Lemma 21.23.3 we have $Rf_*K = R\mathop{\mathrm{lim}}\nolimits Rf_*(\tau _{\geq -n}K)$. Let $V' \in \mathcal{B}'$ and let $\{ V'_ i \to V'\} $ be an element of $\text{Cov}_{V'}$. Then we consider

\[ H^ j(V'_ i, Rf_*K) = H^ j(u(V'_ i), K) \quad \text{and}\quad H^ j(V'_ i, Rf_*(\tau _{\geq -n}K)) = H^ j(u(V'_ i), \tau _{\geq -n}K) \]

The assumption in Situation 21.25.5 implies that the last group is independent of $n$ for $n$ large enough depending on $j$ and $d_{V'}$. Some details omitted. We apply this for $j$ and $j - 1$ and via Lemma 21.23.2 this gives that

\[ H^ j(V'_ i, Rf_*K) = \mathop{\mathrm{lim}}\nolimits H^ j(V'_ i, Rf_*(\tau _{\geq -n} K)) \]

and the system on the right is constant for $n$ larger than a constant depending only on $d_{V'}$ and $j$. Thus Lemma 21.23.6 implies that

\[ H^ j(Rf_*K)(V') \longrightarrow \left(\mathop{\mathrm{lim}}\nolimits H^ j(Rf_*(\tau _{\geq -n}K))\right)(V') \]

is injective. Since the elements $V' \in \mathcal{B}'$ cover every object of $\mathcal{C}'$ we conclude that the map $H^ j(Rf_*K) \to \mathop{\mathrm{lim}}\nolimits H^ j(Rf_*(\tau _{\geq -n}K))$ is injective. The spectral sequence

\[ E_2^{p, q} = R^ pf_*H^ q(\tau _{\geq -n}K) \]

converging to $H^{p + q}(Rf_*(\tau _{\geq -n}K))$ (Derived Categories, Lemma 13.21.3) and assumption (3) show that $H^ j(Rf_*(\tau _{\geq -n}K))$ is constant for $n \geq N - j$. Hence $H^ j(Rf_*K) \to H^ j(Rf_*(\tau _{\geq -n}K))$ is injective for $j \geq N - n$.

Thus we proved the lemma with “isomorphism” in the last line of the lemma replaced by “injective”. However, now choose $j$ and $n$ with $j \geq N - n$. Then consider the distinguished triangle

\[ \tau _{\leq -n - 1}K \to K \to \tau _{\geq -n}K \to (\tau _{\leq -n - 1}K)[1] \]

See Derived Categories, Remark 13.12.4. Since $\tau _{\geq -n}\tau _{\leq -n -1}K = 0$, the injectivity already proven for $\tau _{-n - 1}K$ implies

\[ 0 = H^ j(Rf_*(\tau _{\leq -n - 1}K)) = H^{j + 1}(Rf_*(\tau _{\leq -n - 1}K)) = H^{j + 2}(Rf_*(\tau _{\leq -n - 1}K)) = \ldots \]

By the long exact cohomology sequence associated to the distinguished triangle

\[ Rf_*(\tau _{\leq -n - 1}K) \to Rf_*K \to Rf_*(\tau _{\geq -n}K) \to Rf_*(\tau _{\leq -n - 1}K)[1] \]

this implies that $H^ j(Rf_*K) \to H^ j(Rf_*(\tau _{\geq -n}K))$ is an isomorphism. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0D6Q. Beware of the difference between the letter 'O' and the digit '0'.