Lemma 84.2.11. Let $X$ be a simplicial space and let $a : X \to Y$ be an augmentation. Let $\mathcal{F}$ be an abelian sheaf on $X_{Zar}$. Then $R^ na_*\mathcal{F}$ is the sheaf associated to the presheaf

**Proof.**
This is the analogue of Cohomology, Lemma 20.7.3 or of Cohomology on Sites, Lemma 21.7.4 and we strongly encourge the reader to skip the proof. Choosing an injective resolution of $\mathcal{F}$ on $X_{Zar}$ and using the definitions we see that it suffices to show: (1) the restriction of an injective abelian sheaf on $X_{Zar}$ to $(X \times _ Y V)_{Zar}$ is an injective abelian sheaf and (2) $a_*\mathcal{F}$ is equal to the rule

Part (2) follows from the following facts

$a_*\mathcal{F}$ is the equalizer of the two maps $a_{0, *}\mathcal{F}_0 \to a_{1, *}\mathcal{F}_1$ by Lemma 84.2.8,

$a_{0, *}\mathcal{F}_0(V) = H^0(a_0^{-1}(V), \mathcal{F}_0)$ and $a_{1, *}\mathcal{F}_1(V) = H^0(a_1^{-1}(V), \mathcal{F}_1)$,

$X_0 \times _ Y V = a_0^{-1}(V)$ and $X_1 \times _ Y V = a_1^{-1}(V)$,

$H^0((X \times _ Y V)_{Zar}, \mathcal{F}|_{(X \times _ Y V)_{Zar}})$ is the equalizer of the two maps $H^0(X_0 \times _ Y V, \mathcal{F}_0) \to H^0(X_1 \times _ Y V, \mathcal{F}_1)$ for example by Lemma 84.2.10.

Part (1) follows after one defines an exact left adjoint $j_! : \textit{Ab}((X \times _ Y V)_{Zar}) \to \textit{Ab}(X_{Zar})$ (extension by zero) to restriction $\textit{Ab}(X_{Zar}) \to \textit{Ab}((X \times _ Y V)_{Zar})$ and using Homology, Lemma 12.29.1. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: