Lemma 85.14.5. In Situation 85.3.3 let \mathcal{O} be a sheaf of rings on \mathcal{C}_{total}. If K, K' \in D(\mathcal{O}). Assume
f_\varphi ^{-1}\mathcal{O}_ n \to \mathcal{O}_ m is flat for \varphi : [m] \to [n],
K is cartesian,
\mathop{\mathrm{Hom}}\nolimits (K_ i[i], K'_ i) = 0 for i > 0, and
\mathop{\mathrm{Hom}}\nolimits (K_ i[i + 1], K'_ i) = 0 for i \geq 0.
Then any map K \to K' which induces the zero map K_0 \to K'_0 is zero.
Comments (0)