Lemma 85.14.5. In Situation 85.3.3 let $\mathcal{O}$ be a sheaf of rings on $\mathcal{C}_{total}$. If $K, K' \in D(\mathcal{O})$. Assume

$f_\varphi ^{-1}\mathcal{O}_ n \to \mathcal{O}_ m$ is flat for $\varphi : [m] \to [n]$,

$K$ is cartesian,

$\mathop{\mathrm{Hom}}\nolimits (K_ i[i], K'_ i) = 0$ for $i > 0$, and

$\mathop{\mathrm{Hom}}\nolimits (K_ i[i + 1], K'_ i) = 0$ for $i \geq 0$.

Then any map $K \to K'$ which induces the zero map $K_0 \to K'_0$ is zero.

## Comments (0)