Lemma 83.14.6. In Situation 83.3.3 let $\mathcal{O}$ be a sheaf of rings on $\mathcal{C}_{total}$. Let $(K_ n, K_\varphi )$ be a simplicial system of the derived category of modules. Assume

1. $f_\varphi ^{-1}\mathcal{O}_ n \to \mathcal{O}_ m$ is flat for $\varphi : [m] \to [n]$,

2. $(K_ n, K_\varphi )$ is cartesian,

3. $\mathop{\mathrm{Hom}}\nolimits (K_ i[t], K_ i) = 0$ for $i \geq 0$ and $t > 0$.

Then there exists a cartesian object $K$ of $D(\mathcal{O})$ whose associated simplicial system is isomorphic to $(K_ n, K_\varphi )$.

Proof. The proof is exactly the same as the proof of Lemma 83.13.6 with the following changes

1. use $g_ n^* = Lg_ n^*$ everywhere instead of $g_ n^{-1}$,

2. use $f_\varphi ^* = Lf_\varphi ^*$ everywhere instead of $f_\varphi ^{-1}$,

3. refer to Lemma 83.10.1 instead of Lemma 83.8.1,

4. in the construction of $Y'_{m, n}$ use $\mathcal{O}_ m$ instead of $\mathbf{Z}$,

5. compare with the proof of Lemma 83.14.3 rather than the proof of Lemma 83.13.3.

This ends the proof. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).