The Stacks project

Lemma 76.54.4. Let $S$ be a scheme. Consider a cartesian diagram

\[ \xymatrix{ X \ar[r]_ i \ar[d]_ f & X' \ar[d]^{f'} \\ Y \ar[r]^ j & Y' } \]

of algebraic spaces over $S$. Assume $X' \to Y'$ is flat and locally of finite presentation and $Y \to Y'$ is a finite order thickening. Let $E' \in D(\mathcal{O}_{X'})$. If $E = Li^*(E')$ is $Y$-perfect, then $E'$ is $Y'$-perfect.

Proof. Recall that being $Y$-perfect for $E$ means $E$ is pseudo-coherent and locally has finite tor dimension as a complex of $f^{-1}\mathcal{O}_ Y$-modules (Definition 76.52.1). By Lemma 76.54.3 we find that $E'$ is pseudo-coherent. In particular, $E'$ is in $D_\mathit{QCoh}(\mathcal{O}_{X'})$, see Derived Categories of Spaces, Lemma 75.13.6. By Lemma 76.52.3 this reduces us to the case of schemes. The case of schemes is More on Morphisms, Lemma 37.71.2. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DL4. Beware of the difference between the letter 'O' and the digit '0'.