Lemma 71.8.3. Let $S$ be a scheme. Let $X$ be a regular Noetherian separated algebraic space over $S$. Let $U \subset X$ be a dense affine open. Then there exists an effective Cartier divisor $D \subset X$ with $U = X \setminus D$.
Proof. We claim that the reduced induced algebraic space structure $D$ on $X \setminus U$ (Properties of Spaces, Definition 66.12.5) is the desired effective Cartier divisor. The construction of $D$ commutes with étale localization, see proof of Properties of Spaces, Lemma 66.12.3. Let $X' \to X$ be a surjective étale morphism with $X'$ affine. Since $X$ is separated, we see that $U' = X' \times _ X U$ is affine. Since $|X'| \to |X|$ is open, we see that $U'$ is dense in $X'$. Since $D' = X' \times _ X D$ is the reduced induced scheme structure on $X' \setminus U'$, we conclude that $D'$ is an effective Cartier divisor by Divisors, Lemma 31.16.6 and its proof. This is what we had to show. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)