Lemma 90.28.1. Being formally homotopic is an equivalence relation on sets of morphisms in $\widehat{\mathcal{C}}_\Lambda $.
Proof. Suppose we have any $r \geq 1$ and two maps $h_1, h_2 : R \to R[[t_1, \ldots , t_ r]]$ such that $h_1(a) \bmod (t_1, \ldots , t_ r) = h_2(a) \bmod (t_1, \ldots , t_ r) = a$ for all $a \in R$ and a map $k : R[[t_1, \ldots , t_ r]] \to S$. Then we claim $k \circ h_1$ is formally homotopic to $k \circ h_2$. The symmetric inherent in this claim will show that our notion of formally homotopic is symmetric. Namely, the map
is an isomorphism. Set $h(a) = \Psi ^{-1}(h_2(a))$ for $a \in R$ and $k' = k \circ \Psi $, then we see that $(r, h, k')$ is a formal homotopy between $k \circ h_1$ and $k \circ h_2$, proving the claim
Say we have three maps $f_1, f_2, f_3 : R \to S$ as above and a formal homotopy $(r_1, h_1, k_1)$ between $f_1$ and $f_2$ and a formal homotopy $(r_2, h_2, k_2)$ between $f_3$ and $f_2$ (!). After relabeling the coordinates we may assume $h_2 : R \to R[[t_{r_1 + 1}, \ldots , t_{r_1 + r_2}]]$ and $k_2 : R[[t_{r_1 + 1}, \ldots , t_{r_1 + r_2}]] \to S$. By choosing a suitable isomorphism
we may fit these maps into a commutative diagram
with $h_2'(t_ i) = t_ i$ for $1 \leq i \leq r_1$ and $h_1'(t_ i) = t_ i$ for $r_1 + 1 \leq i \leq r_2$. Some details omitted. Since this diagram is a pushout in the category $\widehat{\mathcal{C}}_\Lambda $ (see proof of Lemma 90.4.3) and since $k_1 \circ h_1 = f_2 = k_2 \circ h_2$ we conclude there exists a map
with $k_1 = k \circ h_2'$ and $k_2 = k \circ h_1'$. Denote $h = h_1' \circ h_2 = h_2' \circ h_1$. Then we have
$k(h_1'(a)) = k_2(a) = f_3(a)$, and
$k(h_2'(a)) = k_1(a) = f_1(a)$.
By the claim in the first paragraph of the proof this shows that $f_1$ and $f_3$ are formally homotopic. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)