Lemma 90.28.1. Being formally homotopic is an equivalence relation on sets of morphisms in $\widehat{\mathcal{C}}_\Lambda $.
90.28 Uniqueness of versal rings
Given $R, S$ in $\widehat{\mathcal{C}}_\Lambda $ we say maps $f, g : R \to S$ are formally homotopic if there exists an $r \geq 0$ and maps $h : R \to R[[t_1, \ldots , t_ r]]$ and $k : R[[t_1, \ldots , t_ r]] \to S$ in $\widehat{\mathcal{C}}_\Lambda $ such that for all $a \in R$ we have
$h(a) \bmod (t_1, \ldots , t_ r) = a$,
$f(a) = k(a)$,
$g(a) = k(h(a))$.
We will say $(r, h, k)$ is a formal homotopy between $f$ and $g$.
Proof. Suppose we have any $r \geq 1$ and two maps $h_1, h_2 : R \to R[[t_1, \ldots , t_ r]]$ such that $h_1(a) \bmod (t_1, \ldots , t_ r) = h_2(a) \bmod (t_1, \ldots , t_ r) = a$ for all $a \in R$ and a map $k : R[[t_1, \ldots , t_ r]] \to S$. Then we claim $k \circ h_1$ is formally homotopic to $k \circ h_2$. The symmetric inherent in this claim will show that our notion of formally homotopic is symmetric. Namely, the map
is an isomorphism. Set $h(a) = \Psi ^{-1}(h_2(a))$ for $a \in R$ and $k' = k \circ \Psi $, then we see that $(r, h, k')$ is a formal homotopy between $k \circ h_1$ and $k \circ h_2$, proving the claim
Say we have three maps $f_1, f_2, f_3 : R \to S$ as above and a formal homotopy $(r_1, h_1, k_1)$ between $f_1$ and $f_2$ and a formal homotopy $(r_2, h_2, k_2)$ between $f_3$ and $f_2$ (!). After relabeling the coordinates we may assume $h_2 : R \to R[[t_{r_1 + 1}, \ldots , t_{r_1 + r_2}]]$ and $k_2 : R[[t_{r_1 + 1}, \ldots , t_{r_1 + r_2}]] \to S$. By choosing a suitable isomorphism
we may fit these maps into a commutative diagram
with $h_2'(t_ i) = t_ i$ for $1 \leq i \leq r_1$ and $h_1'(t_ i) = t_ i$ for $r_1 + 1 \leq i \leq r_2$. Some details omitted. Since this diagram is a pushout in the category $\widehat{\mathcal{C}}_\Lambda $ (see proof of Lemma 90.4.3) and since $k_1 \circ h_1 = f_2 = k_2 \circ h_2$ we conclude there exists a map
with $k_1 = k \circ h_2'$ and $k_2 = k \circ h_1'$. Denote $h = h_1' \circ h_2 = h_2' \circ h_1$. Then we have
$k(h_1'(a)) = k_2(a) = f_3(a)$, and
$k(h_2'(a)) = k_1(a) = f_1(a)$.
By the claim in the first paragraph of the proof this shows that $f_1$ and $f_3$ are formally homotopic. $\square$
Lemma 90.28.2. In the category $\widehat{\mathcal{C}}_\Lambda $, if $f_1, f_2 : R \to S$ are formally homotopic and $g : S \to S'$ is a morphism, then $g \circ f_1$ and $g \circ f_2$ are formally homotopic.
Proof. Namely, if $(r, h, k)$ is a formal homotopy between $f_1$ and $f_2$, then $(r, h, g \circ k)$ is a formal homotopy between $g \circ f_1$ and $g \circ f_2$. $\square$
Lemma 90.28.3. Let $\mathcal{F}$ be a deformation category over $\mathcal{C}_\Lambda $ with $\dim _ k T\mathcal{F} < \infty $ and $\dim _ k \text{Inf}(\mathcal{F}) < \infty $. Let $\xi $ be a versal formal object lying over $R$. Let $\eta $ be a formal object lying over $S$. Then any two maps such that $f_*\xi \cong \eta \cong g_*\xi $ are formally homotopic.
Proof. By Theorem 90.26.4 and its proof, $\mathcal{F}$ has a presentation by a smooth prorepresentable groupoid
in functors on $\mathcal{C}_\lambda $ such that $\mathcal{F}$. Then the maps $s : R \to R_1$ and $t : R \to R_1$ are formally smooth ring maps and $e : R_1 \to R$ is a section. In particular, we can choose an isomorphism $R_1 = R[[t_1, \ldots , t_ r]]$ for some $r \geq 0$ such that $s$ is the embedding $R \subset R[[t_1, \ldots , t_ r]]$ and $t$ corresponds to a map $h : R \to R[[t_1, \ldots , t_ r]]$ with $h(a) \bmod (t_1, \ldots , t_ r) = a$ for all $a \in R$. The existence of the isomorphism $\alpha : f_*\xi \to g_*\xi $ means exactly that there is a map $k : R_1 \to S$ such that $f = k \circ s$ and $g = k \circ t$. This exactly means that $(r, h, k)$ is a formal homotopy between $f$ and $g$. $\square$
Lemma 90.28.4. In the category $\widehat{\mathcal{C}}_\Lambda $, if $f_1, f_2 : R \to S$ are formally homotopic and $\mathfrak p \subset R$ is a minimal prime ideal, then $f_1(\mathfrak p)S = f_2(\mathfrak p)S$ as ideals.
Proof. Suppose $(r, h, k)$ is a formal homotopy between $f_1$ and $f_2$. We claim that $\mathfrak pR[[t_1, \ldots , t_ r]] = h(\mathfrak p)R[[t_1, \ldots , t_ r]]$. The claim implies the lemma by further composing with $k$. To prove the claim, observe that the map $\mathfrak p \mapsto \mathfrak pR[[t_1, \ldots , t_ r]]$ is a bijection between the minimal prime ideals of $R$ and the minimal prime ideals of $R[[t_1, \ldots , t_ r]]$. Finally, $h(\mathfrak p)R[[t_1, \ldots , t_ r]]$ is a minimal prime as $h$ is flat, and hence of the form $\mathfrak q R[[t_1, \ldots , t_ r]]$ for some minimal prime $\mathfrak q \subset R$ by what we just said. But since $h \bmod (t_1, \ldots , t_ r) = \text{id}_ R$ by definition of a formal homotopy, we conclude that $\mathfrak q = \mathfrak p$ as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)