Lemma 90.28.2. In the category $\widehat{\mathcal{C}}_\Lambda $, if $f_1, f_2 : R \to S$ are formally homotopic and $g : S \to S'$ is a morphism, then $g \circ f_1$ and $g \circ f_2$ are formally homotopic.
Proof. Namely, if $(r, h, k)$ is a formal homotopy between $f_1$ and $f_2$, then $(r, h, g \circ k)$ is a formal homotopy between $g \circ f_1$ and $g \circ f_2$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)