The Stacks project

Lemma 100.11.13. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks. Let $x \in |\mathcal{X}|$ with image $y \in |\mathcal{Y}|$. If the residual gerbes $\mathcal{Z}_ x \subset \mathcal{X}$ and $\mathcal{Z}_ y \subset \mathcal{Y}$ of $x$ and $y$ exist, then $f$ induces a commutative diagram

\[ \xymatrix{ \mathcal{X} \ar[d]_ f & \mathcal{Z}_ x \ar[l] \ar[d] \\ \mathcal{Y} & \mathcal{Z}_ y \ar[l] } \]

Proof. Choose a field $k$ and a surjective, flat, locally finitely presented morphism $\mathop{\mathrm{Spec}}(k) \to \mathcal{Z}_ x$. The morphism $\mathop{\mathrm{Spec}}(k) \to \mathcal{Y}$ factors through $\mathcal{Z}_ y$ by Lemma 100.11.11. Thus $\mathcal{Z}_ x \times _\mathcal {Y} \mathcal{Z}_ y$ is a nonempty substack of $\mathcal{Z}_ x$ hence equal to $\mathcal{Z}_ x$ by Lemma 100.11.4. $\square$


Comments (2)

Comment #2647 by Daniel Dore on

Shouldn't the application of Lemma 90.11.12 be to show the morphism factors through , not through ?

There are also:

  • 2 comment(s) on Section 100.11: Residual gerbes

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DTH. Beware of the difference between the letter 'O' and the digit '0'.