Processing math: 100%

The Stacks project

Lemma 100.11.14. Let f : \mathcal{X} \to \mathcal{Y} be a morphism of algebraic stacks. Let x \in |\mathcal{X}| with image y \in |\mathcal{Y}|. Assume the residual gerbes \mathcal{Z}_ x \subset \mathcal{X} and \mathcal{Z}_ y \subset \mathcal{Y} of x and y exist and that there exists a morphism \mathop{\mathrm{Spec}}(k) \to \mathcal{X} in the equivalence class of x such that

\mathop{\mathrm{Spec}}(k) \times _\mathcal {X} \mathop{\mathrm{Spec}}(k) \longrightarrow \mathop{\mathrm{Spec}}(k) \times _\mathcal {Y} \mathop{\mathrm{Spec}}(k)

is an isomorphism. Then \mathcal{Z}_ x \to \mathcal{Z}_ y is an isomorphism.

Proof. Let k'/k be an extension of fields. Then

\mathop{\mathrm{Spec}}(k') \times _\mathcal {X} \mathop{\mathrm{Spec}}(k') \longrightarrow \mathop{\mathrm{Spec}}(k') \times _\mathcal {Y} \mathop{\mathrm{Spec}}(k')

is the base change of the morphism in the lemma by the faithfully flat morphism \mathop{\mathrm{Spec}}(k' \otimes k') \to \mathop{\mathrm{Spec}}(k \otimes k). Thus the property described in the lemma is independent of the choice of the morphism \mathop{\mathrm{Spec}}(k) \to \mathcal{X} in the equivalence class of x. Thus we may assume that \mathop{\mathrm{Spec}}(k) \to \mathcal{Z}_ x is surjective, flat, and locally of finite presentation. In this situation we have

\mathcal{Z}_ x = [\mathop{\mathrm{Spec}}(k)/R]

with R = \mathop{\mathrm{Spec}}(k) \times _\mathcal {X} \mathop{\mathrm{Spec}}(k). See proof of Lemma 100.11.5. Since also R = \mathop{\mathrm{Spec}}(k) \times _\mathcal {Y} \mathop{\mathrm{Spec}}(k) we conclude that the morphism \mathcal{Z}_ x \to \mathcal{Z}_ y of Lemma 100.11.13 is fully faithful by Algebraic Stacks, Lemma 94.16.1. We conclude for example by Lemma 100.11.12. \square


Comments (0)

There are also:

  • 2 comment(s) on Section 100.11: Residual gerbes

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.