Lemma 97.11.5. Let $\mathcal{Z}$ be an algebraic stack. Assume $\mathcal{Z}$ satisfies the equivalent conditions of Lemma 97.11.2. Then there exists a unique strictly full subcategory $\mathcal{Z}' \subset \mathcal{Z}$ such that $\mathcal{Z}'$ is an algebraic stack which satisfies the equivalent conditions of Lemma 97.11.3. The inclusion morphism $\mathcal{Z}' \to \mathcal{Z}$ is a monomorphism of algebraic stacks.

Proof. The last part is immediate from the first part and Lemma 97.8.4. Pick a field $k$ and a morphism $\mathop{\mathrm{Spec}}(k) \to \mathcal{Z}$ which is surjective, flat, and locally of finite type. Set $U = \mathop{\mathrm{Spec}}(k)$ and $R = U \times _\mathcal {Z} U$. The projections $s, t : R \to U$ are locally of finite type. Since $U$ is the spectrum of a field, it follows that $s, t$ are flat and locally of finite presentation (by Morphisms of Spaces, Lemma 64.28.7). We see that $\mathcal{Z}' = [U/R]$ is an algebraic stack by Criteria for Representability, Theorem 94.17.2. By Algebraic Stacks, Lemma 91.16.1 we obtain a canonical morphism

$f : \mathcal{Z}' \longrightarrow \mathcal{Z}$

which is fully faithful. Hence this morphism is representable by algebraic spaces, see Algebraic Stacks, Lemma 91.15.2 and a monomorphism, see Lemma 97.8.4. By Criteria for Representability, Lemma 94.17.1 the morphism $U \to \mathcal{Z}'$ is surjective, flat, and locally of finite presentation. Hence $\mathcal{Z}'$ is an algebraic stack which satisfies the equivalent conditions of Lemma 97.11.3. By Algebraic Stacks, Lemma 91.12.4 we may replace $\mathcal{Z}'$ by its essential image in $\mathcal{Z}$. Hence we have proved all the assertions of the lemma except for the uniqueness of $\mathcal{Z}' \subset \mathcal{Z}$. Suppose that $\mathcal{Z}'' \subset \mathcal{Z}$ is a second such algebraic stack. Then the projections

$\mathcal{Z}' \longleftarrow \mathcal{Z}' \times _\mathcal {Z} \mathcal{Z}'' \longrightarrow \mathcal{Z}''$

are monomorphisms. The algebraic stack in the middle is nonempty by Lemma 97.4.3. Hence the two projections are isomorphisms by Lemma 97.11.4 and we win. $\square$

There are also:

• 2 comment(s) on Section 97.11: Residual gerbes

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).