The Stacks project

Remark 75.15.5. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of quasi-compact and quasi-separated algebraic spaces over $S$. Let $E \in D_\mathit{QCoh}(\mathcal{O}_ Y)$ be a generator (see Theorem 75.15.4). Then the following are equivalent

  1. for $K \in D_\mathit{QCoh}(\mathcal{O}_ X)$ we have $Rf_*K = 0$ if and only if $K = 0$,

  2. $Rf_* : D_\mathit{QCoh}(\mathcal{O}_ X) \to D_\mathit{QCoh}(\mathcal{O}_ Y)$ reflects isomorphisms, and

  3. $Lf^*E$ is a generator for $D_\mathit{QCoh}(\mathcal{O}_ X)$.

The equivalence between (1) and (2) is a formal consequence of the fact that $Rf_* : D_\mathit{QCoh}(\mathcal{O}_ X) \to D_\mathit{QCoh}(\mathcal{O}_ Y)$ is an exact functor of triangulated categories. Similarly, the equivalence between (1) and (3) follows formally from the fact that $Lf^*$ is the left adjoint to $Rf_*$. These conditions hold if $f$ is affine (Lemma 75.6.4) or if $f$ is an open immersion, or if $f$ is a composition of such.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0E4R. Beware of the difference between the letter 'O' and the digit '0'.