The Stacks project

Lemma 36.32.5. Let $f : X \to S$ be a morphism of schemes. Assume

  1. $f$ is proper, flat, and of finite presentation, and

  2. for all $s \in S$ we have $\kappa (s) = H^0(X_ s, \mathcal{O}_{X_ s})$.

Then we have

  1. $f_*\mathcal{O}_ X = \mathcal{O}_ S$ and this holds after any base change,

  2. locally on $S$ we have

    \[ Rf_*\mathcal{O}_ X = \mathcal{O}_ S \oplus P \]

    in $D(\mathcal{O}_ S)$ where $P$ is perfect of tor amplitude in $[1, \infty )$.

Proof. By cohomology and base change (Lemma 36.30.4) the complex $E = Rf_*\mathcal{O}_ X$ is perfect and its formation commutes with arbitrary base change. This first implies that $E$ has tor aplitude in $[0, \infty )$. Second, it implies that for $s \in S$ we have $H^0(E \otimes ^\mathbf {L} \kappa (s)) = H^0(X_ s, \mathcal{O}_{X_ s}) = \kappa (s)$. It follows that the map $\mathcal{O}_ S \to Rf_*\mathcal{O}_ X = E$ induces an isomorphism $\mathcal{O}_ S \otimes \kappa (s) \to H^0(E \otimes ^\mathbf {L} \kappa (s))$. Hence $H^0(E) \otimes \kappa (s) \to H^0(E \otimes ^\mathbf {L} \kappa (s))$ is surjective and we may apply More on Algebra, Lemma 15.76.2 to see that, after replacing $S$ by an affine open neighbourhood of $s$, we have a decomposition $E = H^0(E) \oplus \tau _{\geq 1}E$ with $\tau _{\geq 1}E$ perfect of tor amplitude in $[1, \infty )$. Since $E$ has tor amplitude in $[0, \infty )$ we find that $H^0(E)$ is a flat $\mathcal{O}_ S$-module. It follows that $H^0(E)$ is a flat, perfect $\mathcal{O}_ S$-module, hence finite locally free, see More on Algebra, Lemma 15.74.2 (and the fact that finite projective modules are finite locally free by Algebra, Lemma 10.78.2). It follows that the map $\mathcal{O}_ S \to H^0(E)$ is an isomorphism as we can check this after tensoring with residue fields (Algebra, Lemma 10.79.4). $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0E62. Beware of the difference between the letter 'O' and the digit '0'.