Lemma 36.32.4. Let $f : X \to S$ be a morphism of finite presentation. Let $\mathcal{F}$ be an $\mathcal{O}_ X$-module of finite presentation, flat over $S$ with support proper over $S$. If $R^ if_*\mathcal{F} = 0$ for $i > 0$, then $f_*\mathcal{F}$ is locally free and its formation commutes with arbitrary base change (see proof for explanation).

Proof. By Lemma 36.30.1 the object $E = Rf_*\mathcal{F}$ of $D(\mathcal{O}_ S)$ is perfect and its formation commutes with arbitrary base change, in the sense that $Rf'_*(g')^*\mathcal{F} = Lg^*E$ for any cartesian diagram

$\xymatrix{ X' \ar[r]_{g'} \ar[d]_{f'} & X \ar[d]^ f \\ S' \ar[r]^ g & S }$

of schemes. Since there is never any cohomology in degrees $< 0$, we see that $E$ (locally) has tor-amplitude in $[0, b]$ for some $b$. If $H^ i(E) = R^ if_*\mathcal{F} = 0$ for $i > 0$, then $E$ has tor amplitude in $[0, 0]$. Whence $E = H^0(E)[0]$. We conclude $H^0(E) = f_*\mathcal{F}$ is finite locally free by More on Algebra, Lemma 15.74.2 (and the characterization of finite projective modules in Algebra, Lemma 10.78.2). Commutation with base change means that $g^*f_*\mathcal{F} = f'_*(g')^*\mathcal{F}$ for a diagram as above and it follows from the already established commutation of base change for $E$. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).