Lemma 109.11.2. We have $\mathcal{C}\! \mathit{urves}^{grc, 1} \subset \mathcal{C}\! \mathit{urves}^{h0, 1}$ as open substacks of $\mathcal{C}\! \mathit{urves}$. In particular, given a family of curves $f : X \to S$ whose geometric fibres are reduced, connected and of dimension $1$, then $R^1f_*\mathcal{O}_ X$ is a finite locally free $\mathcal{O}_ S$-module whose formation commutes with arbitrary base change.
Proof. This follows from Varieties, Lemma 33.9.3 and Lemmas 109.9.1 and 109.11.1. The final statement follows from Lemma 109.9.3. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)