The Stacks project

Lemma 107.22.7. The stacks $\overline{\mathcal{M}}$ and $\overline{\mathcal{M}}_ g$ are open substacks of $\mathcal{C}\! \mathit{urves}^{DM}$. In particular, $\overline{\mathcal{M}}$ and $\overline{\mathcal{M}}_ g$ are DM (Morphisms of Stacks, Definition 99.4.2) as well as Deligne-Mumford stacks (Algebraic Stacks, Definition 92.12.2).

Proof. Proof of the first assertion. Let $X$ be a scheme proper over a field $k$ whose singularities are at-worst-nodal, $\dim (X) = 1$, $k = H^0(X, \mathcal{O}_ X)$, the genus of $X$ is $\geq 2$, and $X$ has no rational tails or bridges. We have to show that the classifying morphism $\mathop{\mathrm{Spec}}(k) \to \overline{\mathcal{M}} \to \mathcal{C}\! \mathit{urves}$ factors through $\mathcal{C}\! \mathit{urves}^{DM}$. We may first replace $k$ by the algebraic closure (since we already know the relevant stacks are open substacks of the algebraic stack $\mathcal{C}\! \mathit{urves}$). By Lemmas 107.22.3, 107.7.3, and 107.7.4 it suffices to show that $\text{Der}_ k(\mathcal{O}_ X, \mathcal{O}_ X) = 0$. This is proven in Algebraic Curves, Lemma 53.25.3.

Since $\mathcal{C}\! \mathit{urves}^{DM}$ is the maximal open substack of $\mathcal{C}\! \mathit{urves}$ which is DM, we see this is true also for the open substack $\overline{\mathcal{M}}$ of $\mathcal{C}\! \mathit{urves}^{DM}$. Finally, a DM algebraic stack is Deligne-Mumford by Morphisms of Stacks, Theorem 99.21.6. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0E7A. Beware of the difference between the letter 'O' and the digit '0'.